Multiplicative noise: A mechanism leading to nonextensive statistical mechanics

被引:91
作者
Anteneodo, C [1 ]
Tsallis, C [1 ]
机构
[1] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil
关键词
D O I
10.1063/1.1617365
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A large variety of microscopic or mesoscopic models lead to generic results that accommodate naturally within Boltzmann-Gibbs statistical mechanics [based on S(1)equivalent to-kintegraldu p(u)ln p(u)]. Similarly, other classes of models point toward nonextensive statistical mechanics [based on S(q)equivalent tok[1-integraldu[p(u)](q)]/[q-1], where the value of the entropic index qis an element ofR depends on the specific model]. We show here a family of models, with multiplicative noise, which belongs to the nonextensive class. More specifically, we consider Langevin equations of the type u=f(u)+g(u)xi(t)+eta(t), where xi(t) and eta(t) are independent zero-mean Gaussian white noises with respective amplitudes M and A. This leads to the Fokker-Planck equation partial derivative(t)P(u,t)=-partial derivative(u)[f(u)P(u,t)]+Mpartial derivative(u){g(u)partial derivative(u)[g(u)P(u,t)]}+Apartial derivative(uu)P(u,t). Whenever the deterministic drift is proportional to the noise induced one, i.e., f(u)=-taug(u)g(')(u), the stationary solution is shown to be P(u,infinity)proportional to{1-(1-q)beta[g(u)](2)}(1/(1-q)) [with qequivalent to(tau+3M)/(tau+M) and beta=(tau+M/2A)]. This distribution is precisely the one optimizing S-q with the constraint <[g(u)](2)>(q)equivalent to{integraldu [g(u)](2)[P(u)](q)}/{integraldu [P(u)](q)}=const. We also introduce and discuss various characterizations of the width of the distributions. (C) 2003 American Institute of Physics.
引用
收藏
页码:5194 / 5203
页数:10
相关论文
共 49 条
[11]   Superdiffusion in decoupled continuous time random walks [J].
Budde, C ;
Prato, D ;
Ré, M .
PHYSICS LETTERS A, 2001, 283 (5-6) :309-312
[12]  
CURADO EME, 1991, J PHYS A-MATH GEN, V24, P3187
[13]   GENERALIZED STATISTICAL-MECHANICS - CONNECTION WITH THERMODYNAMICS [J].
CURADO, EMF ;
TSALLIS, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (02) :L69-L72
[14]  
CURADO EMF, 1992, J PHYS A-MATH GEN, V25, P1019, DOI 10.1088/0305-4470/25/4/038
[15]   PROBABILITY-DISTRIBUTIONS FOR MULTICOMPONENT SYSTEMS WITH MULTIPLICATIVE NOISE [J].
DEUTSCH, JM .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1994, 208 (3-4) :445-461
[16]   CONTRIBUTIONS TO THEORY OF MULTIPLICATIVE STOCHASTIC-PROCESSES [J].
FOX, RF .
JOURNAL OF MATHEMATICAL PHYSICS, 1972, 13 (08) :1196-+
[17]   GAUSSIAN STOCHASTIC-PROCESSES IN PHYSICS [J].
FOX, RF .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1978, 48 (03) :179-283
[18]   STABILIZATION BY MULTIPLICATIVE NOISE [J].
GRAHAM, R ;
SCHENZLE, A .
PHYSICAL REVIEW A, 1982, 26 (03) :1676-1685
[19]   Polynomial expansion of diffusion and drift coefficients for classical and quantum statistics [J].
Kaniadakis, G ;
Quarati, P .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1997, 237 (1-2) :229-239
[20]  
KANIADAKIS G, 2002, PHYSICA A, V305