Optical trapping with high forces reveals unexpected behaviors of prion fibrils
被引:52
作者:
Dong, Jijun
论文数: 0引用数: 0
h-index: 0
机构:
Whitehead Inst Biomed Res, Cambridge, MA 02142 USAWhitehead Inst Biomed Res, Cambridge, MA 02142 USA
Dong, Jijun
[1
]
Castro, Carlos E.
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Dept Mech Engn, Cambridge, MA 02139 USAWhitehead Inst Biomed Res, Cambridge, MA 02142 USA
Castro, Carlos E.
[2
]
Boyce, Mary C.
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Dept Mech Engn, Cambridge, MA 02139 USAWhitehead Inst Biomed Res, Cambridge, MA 02142 USA
Boyce, Mary C.
[2
]
Lang, Matthew J.
论文数: 0引用数: 0
h-index: 0
机构:
MIT, Dept Mech Engn, Cambridge, MA 02139 USA
MIT, Dept Biol Engn, Cambridge, MA 02139 USAWhitehead Inst Biomed Res, Cambridge, MA 02142 USA
Lang, Matthew J.
[2
,3
]
Lindquist, Susan
论文数: 0引用数: 0
h-index: 0
机构:
Whitehead Inst Biomed Res, Cambridge, MA 02142 USA
MIT, Howard Hughes Med Inst, Cambridge, MA USA
MIT, Dept Biol, Cambridge, MA USAWhitehead Inst Biomed Res, Cambridge, MA 02142 USA
Lindquist, Susan
[1
,4
,5
]
机构:
[1] Whitehead Inst Biomed Res, Cambridge, MA 02142 USA
[2] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[3] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
[4] MIT, Howard Hughes Med Inst, Cambridge, MA USA
PROTEIN-ONLY INHERITANCE;
SINGLE TITIN MOLECULES;
AMYLOID FIBRILS;
MECHANICAL MANIPULATION;
SPECIES BARRIERS;
STRAIN VARIANTS;
LASER TWEEZERS;
YEAST;
SUP35;
PSI+;
D O I:
10.1038/nsmb.1954
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Amyloid fibrils are important in diverse cellular functions, feature in many human diseases and have potential applications in nanotechnology. Here we describe methods that combine optical trapping and fluorescent imaging to characterize the forces that govern the integrity of amyloid fibrils formed by a yeast prion protein. A crucial advance was to use the self-templating properties of amyloidogenic proteins to tether prion fibrils, enabling their manipulation in the optical trap. At normal pulling forces the fibrils were impervious to disruption. At much higher forces (up to 250 pN), discontinuities occurred in force-extension traces before fibril rupture. Experiments with selective amyloid-disrupting agents and mutations demonstrated that such discontinuities were caused by the unfolding of individual subdomains. Thus, our results reveal unusually strong noncovalent intermolecular contacts that maintain fibril integrity even when individual monomers partially unfold and extend fibril length.