How do chemical denaturants affect the mechanical folding and unfolding of proteins?

被引:52
作者
Cao, Yi [1 ]
Li, Hongbin [1 ]
机构
[1] Univ British Columbia, Dept Chem, Vancouver, BC V6T 1Z1, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
single molecule atomic force microscopy; protein folding and unfolding; chemical denaturation; chemical softening; chevron plot;
D O I
10.1016/j.jmb.2007.10.024
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We present the first single-molecule atomic force microscopy study on the effect of chemical denaturants on the mechanical folding/Unfolding kinetics of a small protein GB1 (the B1 immunoglobulin-binding domain of protein G from Streptococcus). Upon increasing the concentration of the chemical denaturant guanidinium chloride (GdmCl), we observed a systematic decrease in the mechanical stability of GB1, indicating the softening effect of the chemical denaturant on the mechanical stability of proteins. This mechanical softening effect originates from the reduced free-energy barrier between the folded state and the unfolding transition state, which decreases linearly as a function of the denaturant concentration. Chemical denaturants, however, do not alter the mechanical unfolding pathway or shift the position of the transition state for mechanical unfolding. We also found that the folding rate constant of GB1 is slowed down by GdmCl in mechanical folding experiments. By combining the mechanical folding/unfolding kinetics of GB1 in GdmCl solution, we developed the "mechanical chevron plot" as a general tool to understand how chemical denaturants influence the mechanical folding/unfolding kinetics and free-energy diagram in a quantitative fashion. This study demonstrates great potential in combining chemical denaturation with single-molecule atomic force microscopy techniques to reveal invaluable information on the energy landscape underlying protein folding/unfolding reactions. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:316 / 324
页数:9
相关论文
共 52 条
[1]   THERMODYNAMIC ANALYSIS OF THE FOLDING OF THE STREPTOCOCCAL PROTEIN-G IGG-BINDING DOMAINS B1 AND B2 - WHY SMALL PROTEINS TEND TO HAVE HIGH DENATURATION TEMPERATURES [J].
ALEXANDER, P ;
FAHNESTOCK, S ;
LEE, T ;
ORBAN, J ;
BRYAN, P .
BIOCHEMISTRY, 1992, 31 (14) :3597-3603
[2]   KINETIC-ANALYSIS OF FOLDING AND UNFOLDING THE 56-AMINO ACID IGG-BINDING DOMAIN OF STREPTOCOCCAL PROTEIN-G [J].
ALEXANDER, P ;
ORBAN, J ;
BRYAN, P .
BIOCHEMISTRY, 1992, 31 (32) :7243-7248
[3]   STRUCTURE AND DYNAMICS OF A DENATURED 131-RESIDUE FRAGMENT OF STAPHYLOCOCCAL NUCLEASE - A HETERONUCLEAR NMR-STUDY [J].
ALEXANDRESCU, AT ;
ABEYGUNAWARDANA, C ;
SHORTLE, D .
BIOCHEMISTRY, 1994, 33 (05) :1063-1072
[4]  
BELL GI, 1978, SCIENCE, V200, P618, DOI 10.1126/science.347575
[5]   Mechanically unfolding the small, topologically simple protein L [J].
Brockwell, DJ ;
Beddard, GS ;
Paci, E ;
West, DK ;
Olmsted, PD ;
Smith, DA ;
Radford, SE .
BIOPHYSICAL JOURNAL, 2005, 89 (01) :506-519
[6]   Pulling geometry defines the mechanical resistance of a β-sheet protein [J].
Brockwell, DJ ;
Paci, E ;
Zinober, RC ;
Beddard, GS ;
Olmsted, PD ;
Smith, DA ;
Perham, RN ;
Radford, SE .
NATURE STRUCTURAL BIOLOGY, 2003, 10 (09) :731-737
[7]   Nonmechanical protein can have significant mechanical stability [J].
Cao, Y ;
Lam, C ;
Wang, MJ ;
Li, HB .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (04) :642-645
[8]   Polyprotein of GB1 is an ideal artificial elastomeric protein [J].
Cao, Yi ;
Li, Hongbin .
NATURE MATERIALS, 2007, 6 (02) :109-114
[9]   The mechanical stability of ubiquitin is linkage dependent [J].
Carrion-Vazquez, M ;
Li, HB ;
Lu, H ;
Marszalek, PE ;
Oberhauser, AF ;
Fernandez, JM .
NATURE STRUCTURAL BIOLOGY, 2003, 10 (09) :738-743
[10]   Mechanical and chemical unfolding of a single protein: A comparison [J].
Carrion-Vazquez, M ;
Oberhauser, AF ;
Fowler, SB ;
Marszalek, PE ;
Broedel, SE ;
Clarke, J ;
Fernandez, JM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (07) :3694-3699