Cramer's condition and Sanov's theorem

被引:11
作者
Schied, A [1 ]
机构
[1] Humboldt Univ, D-10099 Berlin, Germany
关键词
Sanov's theorem; Cramer condition; Cramer's theorem; exponential moments;
D O I
10.1016/S0167-7152(98)00033-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We discuss whether Sanov's theorem can be extended to a topology that renders the mapping v bar right arrow integral f dv continuous, for a given measurable function f. We show that this is possible if and only if f possesses all exponential moments with respect to the underlying law mu. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:55 / 60
页数:6
相关论文
共 9 条
[1]  
[Anonymous], 1993, LARGE DEVIATION TECH
[2]   ON LARGE DEVIATIONS OF EMPIRICAL MEASURES IN THE TAU-TOPOLOGY [J].
DEACOSTA, A .
JOURNAL OF APPLIED PROBABILITY, 1994, 31A :41-47
[3]  
Deuschel J. D., 1989, LARGE DEVIATIONS
[4]  
EICHELSBACHER P, 1996, LARGE DEVIATIONS EMP
[5]   A Schilder type theorem for super-Brownian motion [J].
Fleischmann, K ;
Gartner, J ;
Kaj, I .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1996, 48 (03) :542-568
[6]   LARGE DEVIATIONS AND THE MAXIMUM-ENTROPY PRINCIPLE FOR MARKED POINT RANDOM-FIELDS [J].
GEORGII, HO ;
ZESSIN, H .
PROBABILITY THEORY AND RELATED FIELDS, 1993, 96 (02) :177-204
[7]   LARGE DEVIATIONS FOR PROCESSES WITH INDEPENDENT INCREMENTS [J].
LYNCH, J ;
SETHURAMAN, J .
ANNALS OF PROBABILITY, 1987, 15 (02) :610-627
[8]  
Schied A, 1996, PROBAB THEORY REL, V104, P319
[9]  
WU LM, 1993, SOME GEN METHODS LAR