Oxygen-Aided Synthesis of Polycrystalline Graphene on Silicon Dioxide Substrates

被引:307
作者
Chen, Jianyi [1 ]
Wen, Yugeng [1 ]
Guo, Yunlong [1 ]
Wu, Bin [1 ]
Huang, Liping [1 ]
Xue, Yunzhou [1 ]
Geng, Dechao [1 ]
Wang, Dong [1 ]
Yu, Gui [1 ]
Liu, Yunqi [1 ]
机构
[1] Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
WALLED CARBON NANOTUBES; LARGE-AREA; TRANSPARENT; GROWTH; FILMS; OXIDE;
D O I
10.1021/ja2063633
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report the metal-catalyst-free synthesis of high-quality polycrystalline graphene on dielectric substrates [silicon dioxide (SiO2) or quartz] using an oxygen-aided chemical vapor deposition (CVD) process. The growth was carried out using a CVD system at atmospheric. pressure. After high-temperature activation of the growth substrates in air, high quality polycrystalline graphene is subsequently grown on SiO2 by utilizing the oxygen-based nucleation sites. The growth mechanism is analogous to that of growth for single-walled carbon nanotubes. Graphene-modified SiO2 substrates can be directly used in transparent conducting films and field-effect devices. The carrier mobilities are about 531 cm(2) V-1 s(-1) in air and 472 cm(2) V-1 s(-1) in N-2, which are dose to that of metal-catalyzed polycrystalline graphene. The method avoids the need for either a metal catalyst or a complicated and skilled postgrowth transfer process and is compatible with current silicon processing techniques.
引用
收藏
页码:17548 / 17551
页数:4
相关论文
共 35 条
[1]   Investigating the Graphitization Mechanism of SiO2 Nanoparticles in Chemical Vapor Deposition [J].
Bachmatiuk, Alicja ;
Boerrnert, Felix ;
Grobosch, Mandy ;
Schaeffel, Franziska ;
Wolff, Ulrike ;
Scott, Andrew ;
Zaka, Mujtaba ;
Warner, Jamie H. ;
Klingeler, Ruediger ;
Knupfer, Martin ;
Buechner, Bernd ;
Ruemmeli, Mark H. .
ACS NANO, 2009, 3 (12) :4098-4104
[2]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[3]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[4]   Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst [J].
Bhaviripudi, Sreekar ;
Jia, Xiaoting ;
Dresselhaus, Mildred S. ;
Kong, Jing .
NANO LETTERS, 2010, 10 (10) :4128-4133
[5]  
Choi H., 2008, THESIS U MASSACHUSET
[6]   Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors [J].
Di, Chong-an ;
Wei, Dacheng ;
Yu, Gui ;
Liu, Yunqi ;
Guo, Yunlong ;
Zhu, Daoben .
ADVANCED MATERIALS, 2008, 20 (17) :3289-+
[7]   Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material [J].
Eda, Goki ;
Fanchini, Giovanni ;
Chhowalla, Manish .
NATURE NANOTECHNOLOGY, 2008, 3 (05) :270-274
[8]   Graphitic carbon growth on Si(111) using solid source molecular beam epitaxy [J].
Hackley, J. ;
Ali, D. ;
DiPasquale, J. ;
Demaree, J. D. ;
Richardson, C. J. K. .
APPLIED PHYSICS LETTERS, 2009, 95 (13)
[9]   Metal-Catalyst-Free Growth of Single-Walled Carbon Nanotubes on Substrates [J].
Huang, Shaoming ;
Cai, Qiran ;
Chen, Jiangying ;
Qian, Yong ;
Zhang, Lijie .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (06) :2094-+
[10]   Transparent carbon nanotube coatings [J].
Kaempgen, M ;
Duesberg, GS ;
Roth, S .
APPLIED SURFACE SCIENCE, 2005, 252 (02) :425-429