Intrafractional tumor motion: Lung and liver

被引:296
作者
Shirato, H
Seppenwoolde, Y
Kitamura, K
Onimura, R
Shimizu, S
机构
[1] Hokkaido Univ, Sch Med, Dept Radiol, Sect Radiat Oncol,Kita Ku, Sapporo, Hokkaido 0068638, Japan
[2] Antoni Van Leeuwenhoek Hosp, Netherlands Canc Inst, Dept Radiotherapy, Amsterdam, Netherlands
关键词
D O I
10.1053/j.semradonc.2003.10.008
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Three-dimensional (3D) dose distribution has been improved by 3D conformation and intensity modulation in external radiotherapy. Interfractional uncertainty has been reduced by image-guided setup techniques. Reduction of ambiguity because of intrafractional target motion is the next step forward. Respiratory organ motion is known to be the largest intrafractional organ motion. Radiotherapy techniques controlling, gating, or tracking respiratory motion are under investigation to use smaller safety margins and higher doses for moving tumors. However, data on intrafractional tumor motion are sparse. We developed a fluoroscopic real-time tracking system and implantation techniques of fiducial markers for moving organs and have been accumulating knowledge about internal tumor motion. We also found the importance of 4-dimensional treatment planning to account for tumor motion in precision radiotherapy. This article reviews the current basic knowledge on respiratory physiology and summarizes the accumulating knowledge on internal motion of lung and liver tumors. © 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:10 / 18
页数:9
相关论文
共 40 条
[31]   Detection of lung tumor movement in real-time tumor-tracking radiotherapy [J].
Shimizu, S ;
Shirato, H ;
Ogura, S ;
Akita-Dosaka, H ;
Kitamura, K ;
Nishioka, T ;
Kagei, K ;
Nishimura, M ;
Miyasaka, K .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2001, 51 (02) :304-310
[32]   Impact of respiratory movement on the computed tomographic images of small lung tumors in three-dimensional (3D) radiotherapy [J].
Shimizu, S ;
Shirato, H ;
Kagei, K ;
Nishioka, T ;
Bo, X ;
Dosaka-Akita, H ;
Hashimoto, S ;
Aoyama, H ;
Tsuchiya, K ;
Miyasaka, K .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2000, 46 (05) :1127-1133
[33]   Feasibility of insertion/implantation of 2.0-mm-diameter gold internal fiducial markers for precise setup and real-time tumor tracking in radiotherapy [J].
Shirato, H ;
Harad, T ;
Harabayashi, T ;
Hida, K ;
Endo, H ;
Kitamura, K ;
Onimaru, R ;
Yamazaki, K ;
Kurauchi, N ;
Shimizu, T ;
Shinohara, N ;
Matsushita, M ;
Dosaka-Akita, H ;
Miyasaka, K .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2003, 56 (01) :240-247
[34]   Real-time tumour-tracking radiotherapy [J].
Shirato, H ;
Shimizu, S ;
Shimizu, T ;
Nishioka, T ;
Miyasaka, K .
LANCET, 1999, 353 (9161) :1331-1332
[35]   Four-dimensional treatment planning and fluoroscopic real-time tumor tracking radiotherapy for moving tumor [J].
Shirato, H ;
Shimizu, S ;
Kitamura, K ;
Nishioka, T ;
Kagei, K ;
Hashimoto, S ;
Aoyama, H ;
Kunieda, T ;
Shinohara, N ;
Dosaka-Akita, H ;
Miyasaka, K .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2000, 48 (02) :435-442
[36]   Respiratory rhythm generation in neonatal and adult mammals: the hybrid pacemaker-network model [J].
Smith, JC ;
Butera, RJ ;
Koshiya, N ;
Del Negro, C ;
Wilson, CG ;
Johnson, SM .
RESPIRATION PHYSIOLOGY, 2000, 122 (2-3) :131-147
[37]   Respiratory-driven lung tumor motion is independent of tumor size, tumor location, and pulmonary function [J].
Stevens, CW ;
Munden, RF ;
Forster, KM ;
Kelly, JF ;
Liao, ZX ;
Starkschall, G ;
Tucker, S ;
Komaki, R .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2001, 51 (01) :62-68
[38]  
Suga K, 1999, JMRI-J MAGN RESON IM, V10, P510, DOI 10.1002/(SICI)1522-2586(199910)10:4<510::AID-JMRI3>3.3.CO
[39]  
2-7
[40]   Compliance, hysteresis, and collapsibility of human small airways [J].
Tiddens, HAWM ;
Hofhuis, W ;
Bogaard, JM ;
Hop, WCJ ;
de Bruin, H ;
Willems, LNA ;
de Jongste, JC .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 1999, 160 (04) :1110-1118