Nonbinary quantum stabilizer codes

被引:436
作者
Ashikhmin, A
Knill, E
机构
[1] Bell Labs, Lucent Technol, Murray Hill, NJ 07974 USA
[2] Los Alamos Natl Lab, Grp CCS 3, Los Alamos, NM 87545 USA
关键词
nonbinary quantum codes; quantum stabilizer codes; self-orthogonal codes;
D O I
10.1109/18.959288
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We define and show how to construct nonbinary quantum stabilizer codes. Our approach is based on nonbinary error bases. It generalizes the relationship between self-orthogonal codes over F-4 and binary quantum codes to one between self-orthogonal codes over F-q2 and q-ary quantum codes for any prime power q.
引用
收藏
页码:3065 / 3072
页数:8
相关论文
共 25 条
[1]   Upper bounds on the size of quantum codes [J].
Ashikhmin, A ;
Litsyn, S .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (04) :1206-1215
[2]   Quantum error detection II: Bounds [J].
Ashikhmin, AE ;
Barg, AM ;
Knill, E ;
Litsyn, SN .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (03) :789-800
[3]   Quantum error detection I: Statement of the problem [J].
Ashikhmin, AE ;
Barg, AM ;
Knill, E ;
Litsyn, SN .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (03) :778-788
[4]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[5]  
BIERBRAUER J, 1998, QUANTUM TWISTED CODE
[6]   Quantum error correction via codes over GF (4) [J].
Calderbank, AR ;
Rains, EM ;
Shor, PW ;
Sloane, NJA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (04) :1369-1387
[7]   Quantum-error correction and orthogonal geometry [J].
Calderbank, AR ;
Rains, EM ;
Shor, PW ;
Sloane, NJA .
PHYSICAL REVIEW LETTERS, 1997, 78 (03) :405-408
[8]  
CARLITZ RG, 1980, INFORMATION THEORY R, V96, P13
[9]  
GALLAGER RG, 1968, INFORMATION THEORY R
[10]   Class of quantum error-correcting codes saturating the quantum Hamming hound [J].
Gottesman, D .
PHYSICAL REVIEW A, 1996, 54 (03) :1862-1868