Triangular nanobeam photonic cavities in single-crystal diamond

被引:54
作者
Bayn, Igal [1 ,2 ]
Meyler, Boris [1 ,2 ]
Salzman, Joseph [1 ,2 ]
Kalish, Rafi [3 ,4 ]
机构
[1] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
[2] Technion Israel Inst Technol, Microelect Res Ctr, IL-32000 Haifa, Israel
[3] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel
[4] Technion Israel Inst Technol, Inst Solid State, IL-32000 Haifa, Israel
来源
NEW JOURNAL OF PHYSICS | 2011年 / 13卷
关键词
NITROGEN-VACANCY CENTER; DESIGN; SPINS; NANOCAVITY; ENTANGLEMENT;
D O I
10.1088/1367-2630/13/2/025018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Diamond photonics provides an attractive architecture to explore room temperature cavity quantum electrodynamics and to realize scalable multi-qubit computing. Here, we review the present state of diamond photonic technology. The design, fabrication and characterization of a novel nanobeam cavity produced in a single crystal diamond are demonstrated. The present cavity design, based on a triangular cross-section, allows vertical confinement and better signal collection efficiency than that of slab-based nanocavities and eliminates the need for a pre-existing membrane. The nanobeam is fabricated by focused-ion-beam (FIB) patterning. The cavity is characterized by confocal photoluminescence. The modes display quality factors of Q similar to 220 and deviate in wavelength by only similar to 1.7 nm from the nitrogen-vacancy (NV-) color center zero phonon line (ZPL). The measured results are found to be in good agreement with three-dimensional finite-difference-time-domain (FDTD) calculations. A more advanced cavity design with Q = 22 000 is modeled, showing the potential for high-Q implementations using the triangular geometry. The prospects of this concept and its application in spin non-demolition measurement and quantum computing are discussed.
引用
收藏
页数:13
相关论文
共 41 条
[31]   Characterization of three-dimensional microstructures in single-crystal diamond [J].
Olivero, P. ;
Rubanov, S. ;
Reichart, P. ;
Gibson, B. C. ;
Huntington, S. T. ;
Rabeau, J. R. ;
Greentree, Andrew D. ;
Salzman, J. ;
Moore, D. ;
Jamieson, D. N. ;
Prawer, S. .
DIAMOND AND RELATED MATERIALS, 2006, 15 (10) :1614-1621
[32]   Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds [J].
Rondin, L. ;
Dantelle, G. ;
Slablab, A. ;
Grosshans, F. ;
Treussart, F. ;
Bergonzo, P. ;
Perruchas, S. ;
Gacoin, T. ;
Chaigneau, M. ;
Chang, H. -C. ;
Jacques, V. ;
Roch, J. -F. .
PHYSICAL REVIEW B, 2010, 82 (11)
[33]  
Scully M. O., 1997, QUANTUM OPTICS
[34]   Solid-state quantum computing using spectral holes [J].
Shahriar, MS ;
Hemmer, PR ;
Lloyd, S ;
Bhatia, PS ;
Craig, AE .
PHYSICAL REVIEW A, 2002, 66 (03) :323011-323016
[35]   Stark shift control of single optical centers in diamond [J].
Tamarat, Ph. ;
Gaebel, T. ;
Rabeau, J. R. ;
Khan, M. ;
Greentree, A. D. ;
Wilson, H. ;
Hollenberg, L. C. L. ;
Prawer, S. ;
Hemmer, P. ;
Jelezko, F. ;
Wrachtrup, J. .
PHYSICAL REVIEW LETTERS, 2006, 97 (08)
[36]   Diamond based photonic crystal microcavities [J].
Tomljenovic-Hanic, S ;
Steel, MJ ;
de Sterke, CM ;
Salzman, J .
OPTICS EXPRESS, 2006, 14 (08) :3556-3562
[37]  
VANDERSAR T, 2010, ARXIV10052204V1
[38]   Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond [J].
Wang, C. F. ;
Hanson, R. ;
Awschalom, D. D. ;
Hu, E. L. ;
Feygelson, T. ;
Yang, J. ;
Butler, J. E. .
APPLIED PHYSICS LETTERS, 2007, 91 (20)
[39]   Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity [J].
Wolters, Janik ;
Schell, Andreas W. ;
Kewes, Guenter ;
Nuesse, Nils ;
Schoengen, Max ;
Doescher, Henning ;
Hannappel, Thomas ;
Loechel, Bernd ;
Barth, Michael ;
Benson, Oliver .
APPLIED PHYSICS LETTERS, 2010, 97 (14)
[40]   Processing quantum information in diamond [J].
Wrachtrup, J ;
Jelezko, F .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2006, 18 (21) :S807-S824