Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds

被引:226
作者
Rondin, L. [1 ]
Dantelle, G. [1 ,2 ]
Slablab, A. [1 ]
Grosshans, F. [1 ]
Treussart, F. [1 ]
Bergonzo, P. [3 ]
Perruchas, S. [2 ]
Gacoin, T. [2 ]
Chaigneau, M. [4 ]
Chang, H. -C. [5 ]
Jacques, V. [1 ]
Roch, J. -F. [1 ]
机构
[1] ENS, UMR CNRS 8537, Lab Photon Quant & Mol, F-94235 Cachan, France
[2] Ecole Polytech, UMR CNRS 7643, Phys Mat Condensee Lab, F-91128 Palaiseau, France
[3] CEA, Diamond Sensors Lab, LIST, F-91191 Gif Sur Yvette, France
[4] Ecole Polytech, UMR CNRS 7647, Phys Interfaces & Couches Minces Lab, F-91128 Palaiseau, France
[5] Acad Sinica, Inst Atom & Mol Sci, Taipei 106, Taiwan
来源
PHYSICAL REVIEW B | 2010年 / 82卷 / 11期
关键词
FLUORESCENT NANODIAMONDS; ELECTRONIC SPIN; COLOR-CENTERS; DIAMOND;
D O I
10.1103/PhysRevB.82.115449
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a study of the charge state conversion of single nitrogen-vacancy (NV) defects hosted in nanodiamonds (NDs). We first show that the proportion of negatively charged NV(-) defects, with respect to its neutral counterpart NV(0), decreases with the size of the ND. We then propose a simple model based on a layer of electron traps located at the ND surface which is in good agreement with the recorded statistics. By using thermal oxidation to remove the shell of amorphous carbon around the NDs, we demonstrate a significant increase in the proportion of NV(-) defects in 10 nm NDs. These results are invaluable for further understanding, control, and use of the unique properties of negatively charged NV defects in diamond.
引用
收藏
页数:5
相关论文
共 35 条
[1]   Nanoscale imaging magnetometry with diamond spins under ambient conditions [J].
Balasubramanian, Gopalakrishnan ;
Chan, I. Y. ;
Kolesov, Roman ;
Al-Hmoud, Mohannad ;
Tisler, Julia ;
Shin, Chang ;
Kim, Changdong ;
Wojcik, Aleksander ;
Hemmer, Philip R. ;
Krueger, Anke ;
Hanke, Tobias ;
Leitenstorfer, Alfred ;
Bratschitsch, Rudolf ;
Jelezko, Fedor ;
Wrachtrup, Joerg .
NATURE, 2008, 455 (7213) :648-U46
[2]  
Balasubramanian G, 2009, NAT MATER, V8, P383, DOI [10.1038/nmat2420, 10.1038/NMAT2420]
[3]   Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond [J].
Barclay, Paul E. ;
Fu, Kai-Mei C. ;
Santori, Charles ;
Beausoleil, Raymond G. .
APPLIED PHYSICS LETTERS, 2009, 95 (19)
[4]   Controlled coupling of a single-diamond nanocrystal to a photonic crystal cavity [J].
Barth, Michael ;
Nuesse, Nils ;
Loechel, Bernd ;
Benson, Oliver .
OPTICS LETTERS, 2009, 34 (07) :1108-1110
[5]  
Bradac C, 2010, NAT NANOTECHNOL, V5, P345, DOI [10.1038/nnano.2010.56, 10.1038/NNANO.2010.56]
[6]   Photon antibunching in the fluorescence of individual color centers in diamond [J].
Brouri, R ;
Beveratos, A ;
Poizat, JP ;
Grangier, P .
OPTICS LETTERS, 2000, 25 (17) :1294-1296
[7]  
*CEA LIST, SAPHIR EL IRR FAC
[8]   Mass production and dynamic imaging of fluorescent nanodiamonds [J].
Chang, Yi-Ren ;
Lee, Hsu-Yang ;
Chen, Kowa ;
Chang, Chun-Chieh ;
Tsai, Dung-Sheng ;
Fu, Chi-Cheng ;
Lim, Tsong-Shin ;
Tzeng, Yan-Kai ;
Fang, Chia-Yi ;
Han, Chau-Chung ;
Chang, Huan-Cheng ;
Fann, Wunshain .
NATURE NANOTECHNOLOGY, 2008, 3 (05) :284-288
[9]   High-temperature annealing of optical centers in type-I diamond [J].
Collins, AT ;
Connor, A ;
Ly, CH ;
Shareef, A ;
Spear, PM .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (08)
[10]   The Fermi level in diamond [J].
Collins, AT .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (14) :3743-3750