Scalable templated growth of graphene nanoribbons on SiC

被引:369
作者
Sprinkle, M. [1 ]
Ruan, M. [1 ]
Hu, Y. [1 ]
Hankinson, J. [1 ]
Rubio-Roy, M. [1 ]
Zhang, B. [1 ]
Wu, X. [1 ]
Berger, C. [1 ,2 ]
de Heer, W. A. [1 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
[2] CNRS, Inst Neel, F-38042 Grenoble, France
基金
美国国家科学基金会;
关键词
EPITAXIAL GRAPHENE; TRANSISTORS; 6H-SIC(0001);
D O I
10.1038/nnano.2010.192
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In spite of its excellent electronic properties, the use of graphene in field-effect transistors is not practical at room temperature without modification of its intrinsically semimetallic nature to introduce a bandgap(1-4). Quantum confinement effects can create a bandgap in graphene nanoribbons, but existing nanoribbon fabrication methods are slow and often produce disordered edges that compromise electronic properties(2-4). Here, we demonstrate the self-organized growth of graphene nanoribbons on a templated silicon carbide substrate prepared using scalable photolithography and microelectronics processing. Direct nanoribbon growth avoids the need for damaging post-processing. Raman spectroscopy, high-resolution transmission electron microscopy and electrostatic force microscopy confirm that nanoribbons as narrow as 40 nm can be grown at specified positions on the substrate. Our prototype graphene devices exhibit quantum confinement at low temperatures (4 K), and an on-off ratio of 10 and carrier mobilities up to 2,700 cm(2) V(-1) s(-1) at room temperature. We demonstrate the scalability of this approach by fabricating 10,000 top-gated graphene transistors on a 0.24-cm(2) SiC chip, which is the largest density of graphene devices reported to date.
引用
收藏
页码:727 / 731
页数:5
相关论文
共 30 条
[1]   Chemical Modification of Epitaxial Graphene: Spontaneous Grafting of Aryl Groups [J].
Bekyarova, Elena ;
Itkis, Mikhail E. ;
Ramesh, Palanisamy ;
Berger, Claire ;
Sprinkle, Michael ;
de Heer, Walt A. ;
Haddon, Robert C. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (04) :1336-+
[2]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[3]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[4]   Step bunching of vicinal 6H-SiC{0001} surfaces [J].
Borovikov, Valery ;
Zangwill, Andrew .
PHYSICAL REVIEW B, 2009, 79 (24)
[5]   Epitaxial graphene [J].
de Heer, Walt A. ;
Berger, Claire ;
Wu, Xiaosong ;
First, Phillip N. ;
Conrad, Edward H. ;
Li, Xuebin ;
Li, Tianbo ;
Sprinkle, Michael ;
Hass, Joanna ;
Sadowski, Marcin L. ;
Potemski, Marek ;
Martinez, Gerard .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :92-100
[6]  
Emtsev KV, 2009, NAT MATER, V8, P203, DOI [10.1038/nmat2382, 10.1038/NMAT2382]
[7]   Utilization of a Buffered Dielectric to Achieve High Field-Effect Carrier Mobility in Graphene Transistors [J].
Farmer, Damon B. ;
Chiu, Hsin-Ying ;
Lin, Yu-Ming ;
Jenkins, Keith A. ;
Xia, Fengnian ;
Avouris, Phaedon .
NANO LETTERS, 2009, 9 (12) :4474-4478
[8]   Electron Transport in Disordered Graphene Nanoribbons [J].
Han, Melinda Y. ;
Brant, Juliana C. ;
Kim, Philip .
PHYSICAL REVIEW LETTERS, 2010, 104 (05)
[9]   The growth and morphology of epitaxial multilayer graphene [J].
Hass, J. ;
de Heer, W. A. ;
Conrad, E. H. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (32)
[10]  
Hass J. R., 2008, THESIS GEORGIA I TEC