MHC-I prediction using a combination of T cell epitopes and MHC-I binding peptides

被引:8
作者
Vider-Shalit, Tal
Louzoun, Yoram [1 ]
机构
[1] Bar Ilan Univ, Dept Math, IL-52900 Ramat Gan, Israel
关键词
Supervised learning; MHC-I binding; Regression; SVM; Labels; GENERATION; PROTEINS; DATABASE;
D O I
10.1016/j.jim.2010.09.037
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We propose a novel learning method that combines multiple experimental modalities to improve the MHC Class-I binding prediction. Multiple experimental modalities are often accessible in the context of a binding problem. Such modalities can provide different labels of data, such as binary classifications, affinity measurements, or direct estimations of the binding profile. Current machine learning algorithms usually focus on a given label type. We here present a novel Multi-Label Vector Optimization (MEMO) formalism to produce classifiers based on the simultaneous optimization of multiple labels. Within this methodology, all label types are combined into a single constrained quadratic dual optimization problem. We apply the MLVO to MHC class-I epitope prediction. We combine affinity measurements (IC50/EC50), binary classifications of epitopes as T cell activators and existing algorithms. The multi-label vector optimization algorithms produce classifiers significantly better than the ones resulting from any of its components. These matrix based classifiers are better or equivalent to the existing state of the art MHC-I epitope prediction tools in the studied alleles. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:43 / 46
页数:4
相关论文
共 11 条
[1]   Automated generation and evaluation of specific MHC binding predictive tools:: ARB matrix applications [J].
Bui, HH ;
Sidney, J ;
Peters, B ;
Sathiamurthy, M ;
Sinichi, A ;
Purton, KA ;
Mothé, BR ;
Chisari, FV ;
Watkins, DI ;
Sette, A .
IMMUNOGENETICS, 2005, 57 (05) :304-314
[2]   Leveraging information across HLA alleles/supertypes improves epitope prediction [J].
Heckerman, David ;
Kadie, Carl ;
Listgarten, Jennifer .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2007, 14 (06) :736-746
[3]   Evaluation of MHC class I peptide binding prediction servers: Applications for vaccine research [J].
Lin, Hong Huang ;
Ray, Surajit ;
Tongchusak, Songsak ;
Reinherz, Ellis L. ;
Brusic, Vladimir .
BMC IMMUNOLOGY, 2008, 9 (1)
[4]   NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11 [J].
Lundegaard, Claus ;
Lamberth, Kasper ;
Harndahl, Mikkel ;
Buus, Soren ;
Lund, Ole ;
Nielsen, Morten .
NUCLEIC ACIDS RESEARCH, 2008, 36 :W509-W512
[5]  
PARKER KC, 1994, J IMMUNOL, V152, P163
[6]   The immune epitope database and analysis resource: From vision to blueprint [J].
Peters, B ;
Sidney, J ;
Bourne, P ;
Bui, HH ;
Buus, S ;
Doh, G ;
Fleri, W ;
Kronenberg, M ;
Kubo, R ;
Lund, O ;
Nemazee, D ;
Ponomarenko, JV ;
Sathiamurthy, M ;
Schoenberger, S ;
Stewart, S ;
Surko, P ;
Way, S ;
Wilson, S ;
Sette, A .
PLOS BIOLOGY, 2005, 3 (03) :379-381
[7]   SYFPEITHI: database for MHC ligands and peptide motifs [J].
Rammensee, HG ;
Bachmann, J ;
Emmerich, NPN ;
Bachor, OA ;
Stevanovic, S .
IMMUNOGENETICS, 1999, 50 (3-4) :213-219
[8]   The IMGT/HLA database [J].
Robinson, James ;
Waller, Matthew J. ;
Fail, Sylvie C. ;
McWilliam, Hamish ;
Lopez, Rodrigo ;
Parham, Peter ;
Marsh, Steven G. E. .
NUCLEIC ACIDS RESEARCH, 2009, 37 :D1013-D1017
[9]   Degradation of cell proteins and the generation of MHC class I-presented peptides [J].
Rock, KL ;
Goldberg, AL .
ANNUAL REVIEW OF IMMUNOLOGY, 1999, 17 :739-779
[10]  
VAPNIK VN, 2006, ESTIMATION DEPENDENC, pR18