Robust interconnects and packaging for microfluidic elastomeric chips

被引:27
作者
Chen, H
Acharya, D
Gajraj, A
Meiners, JC [1 ]
机构
[1] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Div Biophys Res, Ann Arbor, MI 48109 USA
关键词
D O I
10.1021/ac034179i
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A stable, rugged, and easy-to-use microfluidic platform has been developed and evaluated. The system is based on multilayer silicone elastomer chips with integrated flow channels and active components, such as pressure-actuated valves. The silicone chips and stainless steel interconnect tubes are embedded in a block of an epoxy resin to give the chip and the interconnects outstanding mechanical stability. Full optical accessibility of the chip for demanding optical detection and manipulation applications, such as fluorescence and bright-field microscopy and optical tweezing, is achieved through the use of an optically transparent epoxy resin and microscope cover glasses as the packaging materials. Furthermore, this packaging technique uses a purely mechanical seal between the elastomer and cover glass, enabling applications that use chemically functionalized glass surfaces as the bottom of the flow channels. In addition, a socket was developed in which the microfluidic chips can be plugged in to provide all external connections for reagent delivery and pressure control of the integrated valves. The utility of these devices is demonstrated by showing that single DNA molecules can be attached to protein-coated walls of the flow channels and manipulated with optical tweezers.
引用
收藏
页码:5287 / 5291
页数:5
相关论文
共 11 条
[1]   A microfabricated device for sizing and sorting DNA molecules [J].
Chou, HP ;
Spence, C ;
Scherer, A ;
Quake, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (01) :11-13
[2]   Rapid prototyping of microfluidic systems in poly(dimethylsiloxane) [J].
Duffy, DC ;
McDonald, JC ;
Schueller, OJA ;
Whitesides, GM .
ANALYTICAL CHEMISTRY, 1998, 70 (23) :4974-4984
[3]   Integrated capillary electrophoresis on flexible silicone microdevices: Analysis of DNA restriction fragments and detection of single DNA molecules on microchips [J].
Effenhauser, CS ;
Bruin, GJM ;
Paulus, A ;
Ehrat, M .
ANALYTICAL CHEMISTRY, 1997, 69 (17) :3451-3457
[4]   A microfabricated fluorescence-activated cell sorter [J].
Fu, AY ;
Spence, C ;
Scherer, A ;
Arnold, FH ;
Quake, SR .
NATURE BIOTECHNOLOGY, 1999, 17 (11) :1109-1111
[5]   An integrated microfabricated cell sorter [J].
Fu, AY ;
Chou, HP ;
Spence, C ;
Arnold, FH ;
Quake, SR .
ANALYTICAL CHEMISTRY, 2002, 74 (11) :2451-2457
[6]   A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion [J].
Hansen, CL ;
Skordalakes, E ;
Berger, JM ;
Quake, SR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (26) :16531-16536
[7]   Flow injection analysis in a microfluidic format [J].
Leach, AM ;
Wheeler, AR ;
Zare, RN .
ANALYTICAL CHEMISTRY, 2003, 75 (04) :967-972
[8]   Microfluidic large-scale integration [J].
Thorsen, T ;
Maerkl, SJ ;
Quake, SR .
SCIENCE, 2002, 298 (5593) :580-584
[9]   Monolithic microfabricated valves and pumps by multilayer soft lithography [J].
Unger, MA ;
Chou, HP ;
Thorsen, T ;
Scherer, A ;
Quake, SR .
SCIENCE, 2000, 288 (5463) :113-116
[10]   Stretching DNA with optical tweezers [J].
Wang, MD ;
Yin, H ;
Landick, R ;
Gelles, J ;
Block, SM .
BIOPHYSICAL JOURNAL, 1997, 72 (03) :1335-1346