The anoxic plant mitochondrion as a nitrite: NO reductase

被引:134
作者
Gupta, Kapuganti J. [2 ]
Igamberdiev, Abir U. [1 ]
机构
[1] Mem Univ Newfoundland, Dept Biol, St John, NF A1B 3X9, Canada
[2] Univ Rostock, Dept Plant Physiol, D-10859 Rostock, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
Plant mitochondria; Anoxia; Nitrite reduction; Nitric oxide; Hemoglobin; CYTOCHROME-C-OXIDASE; ELECTRON-TRANSPORT; CYTOPLASMIC ACIDOSIS; ARABIDOPSIS-THALIANA; DIOXYGENASE FUNCTION; S-NITROSYLATION; IN-VITRO; OXYGEN; HEMOGLOBIN; NITRATE;
D O I
10.1016/j.mito.2011.03.005
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Under the conditions of oxygen deprivation, accumulating nitrite can be reduced in the mitochondrial electron transport chain forming free radical nitric oxide (NO). By reducing nitrite to NO, plant mitochondria preserve the capacity to oxidize external NADH and NADPH and retain a limited power for ATP synthesis complementing glycolytic ATP production. NO participates in O-2 balance in mitochondria by competitively inhibiting cytochrome c oxidase which can oxidize it to nitrite when oxygen concentration increases. Some of the NO escapes to the cytosol, where the efficient scavenging system involving non-symbiotic hemoglobin oxygenates NO to nitrate and supports continuous anaerobic turnover of nitrogen species. (C) 2011 Elsevier B.V. and Mitochondria Research Society. All rights reserved.
引用
收藏
页码:537 / 543
页数:7
相关论文
共 70 条
[1]   Flooding stress: Acclimations and genetic diversity [J].
Bailey-Serres, J. ;
Voesenek, L. A. C. J. .
ANNUAL REVIEW OF PLANT BIOLOGY, 2008, 59 :313-339
[2]   Nitrite Reductase Activity of Cytochrome c [J].
Basu, Swati ;
Azarova, Natalia A. ;
Font, Michael D. ;
King, S. Bruce ;
Hogg, Neil ;
Gladwin, Mark T. ;
Shiva, Sruti ;
Kim-Shapiro, Daniel B. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (47) :32590-32597
[3]   Nitrite-nitric oxide control of mitochondrial respiration at the frontier of anoxia [J].
Benamar, Abdelilah ;
Rolletschek, Hardy ;
Borisjuk, Ljudmilla ;
Avelange-Macherel, Marie-Helene ;
Curien, Gilles ;
Mostefai, H. Ahmed ;
Andriantsitohaina, Ramaroson ;
Macherel, David .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2008, 1777 (10) :1268-1275
[4]   Low oxygen sensing and balancing in plant seeds: a role for nitric oxide [J].
Borisjuk, Ljudmilla ;
Macherel, David ;
Benamar, Abdelilah ;
Wobus, Ulrich ;
Rolletschek, Hardy .
NEW PHYTOLOGIST, 2007, 176 (04) :813-823
[5]  
Botrel A, 1996, PLANT PHYSIOL BIOCH, V34, P645
[6]   Nitric oxide inhibition of mitochondrial respiration and its role in cell death [J].
Brown, GC ;
Borutaite, V .
FREE RADICAL BIOLOGY AND MEDICINE, 2002, 33 (11) :1440-1450
[7]   NANOMOLAR CONCENTRATIONS OF NITRIC-OXIDE REVERSIBLY INHIBIT SYNAPTOSOMAL RESPIRATION BY COMPETING WITH OXYGEN AT CYTOCHROME-OXIDASE [J].
BROWN, GC ;
COOPER, CE .
FEBS LETTERS, 1994, 356 (2-3) :295-298
[8]   Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation [J].
Brunelle, JK ;
Bell, EL ;
Quesada, NM ;
Vercauteren, K ;
Tiranti, V ;
Zeviani, M ;
Scarpulla, RC ;
Chandel, NS .
CELL METABOLISM, 2005, 1 (06) :409-414
[9]   Nitric oxide and the respiratory enzyme [J].
Brunori, Maurizio ;
Forte, Elena ;
Arese, Marzia ;
Mastronicola, Daniela ;
Giuffre, Alessandro ;
Sarti, Paolo .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2006, 1757 (9-10) :1144-1154
[10]   Yeast flavohemoglobin, a nitric oxide oxidoreductase, is located in both the cytosol and the mitochondrial matrix [J].
Cassanova, N ;
O'Brien, KM ;
Stahl, BT ;
McClure, T ;
Poyton, RO .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (09) :7645-7653