Sequencing and expression of two arsenic resistance operons with different functions in the highly arsenic-resistant strain Ochrobactrum tritici SCII24T

被引:65
作者
Branco, Rita [1 ]
Chung, Ana-Paula [1 ]
Morais, Paula V. [1 ,2 ]
机构
[1] IMAR Lab Microbiol, P-3004517 Coimbra, Portugal
[2] Univ Coimbra, Dept Biochem, P-3001401 Coimbra, Portugal
关键词
D O I
10.1186/1471-2180-8-95
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Background: Arsenic (As) is a natural metalloid, widely used in anthropogenic activities, that can exist in different oxidation states. Throughout the world, there are several environments contaminated with high amounts of arsenic where many organisms can survive. The most stable arsenical species are arsenate and arsenite that can be subject to chemically and microbiologically oxidation, reduction and methylation reactions. Organisms surviving in arsenic contaminated environments can have a diversity of mechanisms to resist to the harmful effects of arsenical compounds. Results: The highly metal resistant Ochrobactrum tritici SCII24 was able to grow in media with arsenite (50 mM), arsenate (up to 200 mM) and antimonite (10 mM). This strain contains two arsenic and antimony resistance operons (ars1 and ars2), which were cloned and sequenced. Sequence analysis indicated that ars1 operon contains five genes encoding the following proteins: ArsR, ArsD, ArsA, CBS-domain-containing protein and ArsB. The ars2 operon is composed of six genes that encode two other ArsR, two ArsC (belonging to different families of arsenate reductases), one ACR3 and one ArsH-like protein. The involvement of ars operons in arsenic resistance was confirmed by cloning both of them in an Escherichia coli ars-mutant. The ars1 operon conferred resistance to arsenite and antimonite on E. coli cells, whereas the ars2 operon was also responsible for resistance to arsenite and arsenate. Although arsH was not required for arsenate resistance, this gene seems to be important to confer high levels of arsenite resistance. None of ars1 genes were detected in the other type strains of genus Ochrobactrum, but sequences homologous with ars2 operon were identified in some strains. Conclusion: A new strategy for bacterial arsenic resistance is described in this work. Two operons involved in arsenic resistance, one giving resistance to arsenite and antimonite and the other giving resistance to arsenate were found in the same bacterial strain.
引用
收藏
页数:12
相关论文
共 43 条
[31]  
Silver S, 2002, BOOK SOIL P, P247
[32]  
Stapleton M., 2002, GENOME BIOL, V3, DOI [10.1186/gb-2002-3-12-research0080, DOI 10.1186/GB-2002-3-12-RESEARCH0080]
[33]  
Suzuki K, 1998, APPL ENVIRON MICROB, V64, P411
[34]   Resistance determinants of a highly arsenic-resistant strain of Leptospirillum ferriphilum isolated from a commercial biooxidation tank [J].
Tuffin, IM ;
Hector, SB ;
Deane, SM ;
Rawlings, DE .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2006, 72 (03) :2247-2253
[35]   An unusual Tn21-like transposon containing an ars operon is present in highly arsenic-resistant strains of the biomining bacterium Acidithiobacillus caldus [J].
Tuffin, IM ;
de Groot, P ;
Deane, SM ;
Rawlings, DE .
MICROBIOLOGY-SGM, 2005, 151 :3027-3039
[36]   Crystal structure of an apo form of Shigella flexneri ArsH protein with an NADPH-dependent FMN reductase activity [J].
Vorontsov, Ivan I. ;
Minasov, George ;
Brunzelle, Joseph S. ;
Shuvalova, Ludmilla ;
Kiryukhina, Olga ;
Collart, Frank R. ;
Anderson, Wayne F. .
PROTEIN SCIENCE, 2007, 16 (11) :2483-2490
[37]   Arsenic resistance in Halobacterium sp strain NRC-1 examined by using an improved gene knockout system [J].
Wang, GJ ;
Kennedy, SP ;
Fasiludeen, S ;
Rensing, C ;
DasSarma, S .
JOURNAL OF BACTERIOLOGY, 2004, 186 (10) :3187-3194
[38]   arsRBOCT arsenic resistance system encoded by linear plasmid pHZ227 in Streptomyces sp strain FR-008 [J].
Wang, Lianrong ;
Chen, Shi ;
Xiao, Xiang ;
Huang, Xi ;
Zhou, Delin ;
Zhou, Xiufen ;
Deng, Zixin .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2006, 72 (05) :3738-3742
[39]  
WU JH, 1993, J BIOL CHEM, V268, P52
[40]   The Saccharomyces cerevisiae ACR3 gene encodes a putative membrane protein involved in arsenite transport [J].
Wysocki, R ;
Bobrowicz, P ;
Ulaszewski, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (48) :30061-30066