Symbolic transfer entropy

被引:454
作者
Staniek, Matthaeus [1 ,2 ]
Lehnertz, Klaus [1 ,2 ,3 ]
机构
[1] Univ Bonn, Dept Epidemiol, Neurophys Grp, D-53105 Bonn, Germany
[2] Univ Bonn, Helmholtz Inst Radiat & Nucl Phys, D-53115 Bonn, Germany
[3] Univ Bonn, Interdisciplinary Ctr Complex Syst, D-53117 Bonn, Germany
关键词
D O I
10.1103/PhysRevLett.100.158101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose to estimate transfer entropy using a technique of symbolization. We demonstrate numerically that symbolic transfer entropy is a robust and computationally fast method to quantify the dominating direction of information flow between time series from structurally identical and nonidentical coupled systems. Analyzing multiday, multichannel electroencephalographic recordings from 15 epilepsy patients our approach allowed us to reliably identify the hemisphere containing the epileptic focus without observing actual seizure activity.
引用
收藏
页数:4
相关论文
共 26 条
[1]   A robust method for detecting interdependences: application to intracranially recorded EEG [J].
Arnhold, J ;
Grassberger, P ;
Lehnertz, K ;
Elger, CE .
PHYSICA D-NONLINEAR PHENOMENA, 1999, 134 (04) :419-430
[2]   Permutation entropy: A natural complexity measure for time series [J].
Bandt, C ;
Pompe, B .
PHYSICAL REVIEW LETTERS, 2002, 88 (17) :4
[3]   Entropy of interval maps via permutations [J].
Bandt, C ;
Keller, G ;
Pompe, B .
NONLINEARITY, 2002, 15 (05) :1595-1602
[4]   Synchronization in asymmetrically coupled networks with node balance [J].
Belykh, I ;
Belykh, V ;
Hasler, M .
CHAOS, 2006, 16 (01)
[5]   STATIONARITY OF THE EEG SERIES [J].
BLANCO, S ;
GARCIA, H ;
QUIROGA, RQ ;
ROMANELLI, L ;
ROSSO, OA .
IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 1995, 14 (04) :395-399
[6]   Partial mutual information for coupling analysis of multivariate time series [J].
Frenzel, Stefan ;
Pompe, Bernd .
PHYSICAL REVIEW LETTERS, 2007, 99 (20)
[7]   INVESTIGATING CAUSAL RELATIONS BY ECONOMETRIC MODELS AND CROSS-SPECTRAL METHODS [J].
GRANGER, CWJ .
ECONOMETRICA, 1969, 37 (03) :424-438
[8]   Causality detection based on information-theoretic approaches in time series analysis [J].
Hlavackova-Schindler, Katerina ;
Palus, Milan ;
Vejmelka, Martin ;
Bhattacharya, Joydeep .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2007, 441 (01) :1-46
[9]   Information transfer in continuous processes [J].
Kaiser, A ;
Schreiber, T .
PHYSICA D-NONLINEAR PHENOMENA, 2002, 166 (1-2) :43-62
[10]  
Kantz H., 2003, NONLINEAR TIME SERIE