Entropy of interval maps via permutations

被引:175
作者
Bandt, C [1 ]
Keller, G
Pompe, B
机构
[1] Univ Greifswald, Inst Math & Informat, D-17487 Greifswald, Germany
[2] Univ Erlangen Nurnberg, Math Inst, D-91054 Erlangen, Germany
[3] Univ Greifswald, Inst Phys, D-17487 Greifswald, Germany
关键词
D O I
10.1088/0951-7715/15/5/312
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For piecewise monotone interval maps, we show that the Kolmogorov-Sinai entropy can be obtained from order statistics of the values in a generic orbit. A similar statement holds for topological entropy.
引用
收藏
页码:1595 / 1602
页数:8
相关论文
共 11 条
[1]   Permutation entropy: A natural complexity measure for time series [J].
Bandt, C ;
Pompe, B .
PHYSICAL REVIEW LETTERS, 2002, 88 (17) :4
[2]   New order for periodic orbits of interval maps [J].
Blokh, A ;
Misiurewicz, M .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1997, 17 :565-574
[3]   Sharkovskii type of cycles [J].
Blokh, AM ;
Coven, EM .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1996, 28 :417-424
[4]  
Bobok J, 1998, FUND MATH, V156, P33
[5]  
BOYARSKI A, 1997, LAWS CHAOS INVARIANT
[6]  
DEMELO W, 1993, ONE DIMENSIONAL DYNA
[7]  
FORREST A, 2000, P C ERG THEOR TOR SP
[8]  
Keller G, 1998, EQUILIBRIUM STATES E, DOI DOI 10.1017/CBO9781107359987
[9]   ENTROPY OF PIECEWISE MONOTONE MAPPINGS [J].
MISIUREWICZ, M ;
SZLENK, W .
STUDIA MATHEMATICA, 1980, 67 (01) :45-63
[10]  
PETERSEN K, 1983, ERGODIC THEORY