Oxygen Plasma Induced Hierarchically Structured Gold Electrocatalyst for Selective Reduction of Carbon Dioxide to Carbon Monoxide

被引:72
作者
Koh, Jai Hyun [1 ]
Jeon, Hyo Sang [1 ,2 ]
Jee, Michael Shincheon [1 ]
Nursanto, Eduardus Budi [1 ,2 ]
Lee, Hyunjoo [1 ,2 ]
Hwang, Yun Jeong [1 ,2 ]
Min, Byoung Koun [1 ,2 ,3 ]
机构
[1] Korea Inst Sci & Technol, Clean Energy Res Ctr, Seoul 136791, South Korea
[2] Korea Univ Sci & Technol, Taejon 305350, South Korea
[3] Korea Univ, Green Sch, Seoul 136713, South Korea
基金
新加坡国家研究基金会;
关键词
ELECTROCHEMICAL REDUCTION; CO2; REDUCTION; ENHANCED ACTIVITY; CONVERSION; CATALYSTS; ELECTRODE; POTENTIALS; EFFICIENCY;
D O I
10.1021/jp509967m
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical reduction of CO2 into C1 products with high energy density has attracted attention due to the demands for renewable energy sources. Herein, we demonstrate a selective electrocatalytic CO2 reduction system where the cathode consists of hierarchically structured Au islands catalysts. To be more specific, the Au islands were prepared by oxygen plasma treatment on the Au foil to increase the current density for the selective production of carbon monoxide with over 95% of faradaic efficiency. Faradaic efficiency, production rate, and the onset potential for CO2 reduction were significantly improved by the expanded surface area compared with a polycrystalline Au electrode. Furthermore, the performance of CO2 reduction to CO was enhanced by adding ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate) which has high CO2-capture ability and catalytic activity. On the other hand, the rate-determining step of the Au electrode for the CO production determined by Tafel plots was found to be consistent with the initial one electron transfer step to form the surface-adsorbed CO2 intermediates regardless of the application of hierarchically structured catalyst and ionic liquid in the CO2 reduction system.
引用
收藏
页码:883 / 889
页数:7
相关论文
共 33 条
[1]  
Barton ColeE., 2010, Carbon Dioxide as Chemical Feedstock, P291
[2]   Molecular artificial photosynthesis [J].
Berardi, Serena ;
Drouet, Samuel ;
Francas, Laia ;
Gimbert-Surinach, Carolina ;
Guttentag, Miguel ;
Richmond, Craig ;
Stoll, Thibaut ;
Llobet, Antoni .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (22) :7501-7519
[3]   Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries [J].
Centi, Gabriele ;
Quadrelli, Elsje Alessandra ;
Perathoner, Siglinda .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (06) :1711-1731
[4]   Aqueous CO2 Reduction at Very Low Overpotential on Oxide-Derived Au Nanoparticles [J].
Chen, Yihong ;
Li, Christina W. ;
Kanan, Matthew W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (49) :19969-19972
[5]   Tin Oxide Dependence of the CO2 Reduction Efficiency on Tin Electrodes and Enhanced Activity for Tin/Tin Oxide Thin-Film Catalysts [J].
Chen, Yihong ;
Kanan, Matthew W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (04) :1986-1989
[6]   Catalysis of the electrochemical reduction of carbon dioxide [J].
Costentin, Cyrille ;
Robert, Marc ;
Saveant, Jean-Michel .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (06) :2423-2436
[7]   A Local Proton Source Enhances CO2 Electroreduction to CO by a Molecular Fe Catalyst [J].
Costentin, Cyrille ;
Drouet, Samuel ;
Robert, Marc ;
Saveant, Jean-Michel .
SCIENCE, 2012, 338 (6103) :90-94
[8]   Selective Conversion of CO2 to CO with High Efficiency Using an Inexpensive Bismuth-Based Electrocatalyst [J].
DiMeglio, John L. ;
Rosenthal, Joel .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (24) :8798-8801
[9]   FERROCENE AS AN INTERNAL STANDARD FOR ELECTROCHEMICAL MEASUREMENTS [J].
GAGNE, RR ;
KOVAL, CA ;
LISENSKY, GC .
INORGANIC CHEMISTRY, 1980, 19 (09) :2854-2855
[10]   A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper [J].
Gattrell, M. ;
Gupta, N. ;
Co, A. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2006, 594 (01) :1-19