Classical information capacity of a quantum channel

被引:405
作者
Hausladen, P
Jozsa, R
Schumacher, B
Westmoreland, M
Wootters, WK
机构
[1] UNIV PLYMOUTH, SCH MATH & STAT, PLYMOUTH PL4 8AA, DEVON, ENGLAND
[2] KENYON COLL, DEPT PHYS & ASTRON, GAMBIER, OH 43022 USA
[3] DENISON UNIV, DEPT MATH, GRANVILLE, OH 43023 USA
[4] WILLIAMS COLL, DEPT PHYS, WILLIAMSTOWN, MA 01267 USA
来源
PHYSICAL REVIEW A | 1996年 / 54卷 / 03期
关键词
D O I
10.1103/PhysRevA.54.1869
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider the transmission of classical information over a quantum channel. The channel is defined by an ''alphabet'' of quantum states, e.g., certain photon polarizations, together with a specified set of probabilities with which these states must be sent. If the receiver is restricted to making separate measurements on the received ''letter'' states, then the Kholevo theorem implies that the amount of information transmitted per letter cannot be greater than the von Neumann entropy H of the letter ensemble. In fact the actual amount of transmitted information will usually be significantly less than H. We show, however, that if the sender uses a block coding scheme consisting of a choice of code words that respects the a priori probabilities of the letter states, and the receiver distinguishes whole words rather than individual letters, then the information transmitted per letter can be made arbitrarily close to H and never exceeds H. This provides a precise information-theoretic interpretation of von Neumann entropy in quantum mechanics. We apply this result to ''superdense'' coding, and we consider its extension to noisy channels.
引用
收藏
页码:1869 / 1876
页数:8
相关论文
共 21 条
[11]   A COMPLETE CLASSIFICATION OF QUANTUM ENSEMBLES HAVING A GIVEN DENSITY-MATRIX [J].
HUGHSTON, LP ;
JOZSA, R ;
WOOTTERS, WK .
PHYSICS LETTERS A, 1993, 183 (01) :14-18
[12]   LOWER BOUND FOR ACCESSIBLE INFORMATION IN QUANTUM-MECHANICS [J].
JOZSA, R ;
ROBB, D ;
WOOTTERS, WK .
PHYSICAL REVIEW A, 1994, 49 (02) :668-677
[13]   A NEW PROOF OF THE QUANTUM NOISELESS CODING THEOREM [J].
JOZSA, R ;
SCHUMACHER, B .
JOURNAL OF MODERN OPTICS, 1994, 41 (12) :2343-2349
[14]  
Kholevo A. S., 1973, Problems of Information Transmission, V9, P177
[15]  
Kholevo A. S., 1973, PROBL PEREDACHI INF, V9, P31
[16]  
LEVITIN LB, 1995, P 4 ALL UN C INF COD
[17]   OPTIMAL DETECTION OF QUANTUM INFORMATION [J].
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1991, 66 (09) :1119-1122
[18]   NEUMARK THEOREM AND QUANTUM INSEPARABILITY [J].
PERES, A .
FOUNDATIONS OF PHYSICS, 1990, 20 (12) :1441-1453
[19]   QUANTUM CODING [J].
SCHUMACHER, B .
PHYSICAL REVIEW A, 1995, 51 (04) :2738-2747
[20]   GENERAL PROPERTIES OF ENTROPY [J].
WEHRL, A .
REVIEWS OF MODERN PHYSICS, 1978, 50 (02) :221-260