Solving the simplicity constraints for spinfoam quantum gravity

被引:122
作者
Livine, E. R. [1 ]
Speziale, S. [2 ]
机构
[1] Ecole Normale Super Lyon, Phys Lab, CNRS, UMR 5672, F-69007 Lyon, France
[2] Perimeter Inst, Waterloo, ON N2L 2Y5, Canada
关键词
D O I
10.1209/0295-5075/81/50004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
General relativity can be written as topological BF theory plus a set of second-class constraints. Classically the constraints provide the geometric interpretation of the B variables and reduce BF to general relativity. In the quantum theory these constraints do not commute and thus cannot be imposed strongly. We use SU(2) coherent states to develop a notion of semiclassical states for the quantum geometry which allows to implement them weakly, i.e. on average with minimal uncertainty. Using the spinfoam formalism, this leads to a background independent regularized path integral for quantum gravity whose variables have a transparent geometric interpretation. Copyright (c) EPLA, 2008.
引用
收藏
页数:6
相关论文
共 27 条
[1]   Complete LQG propagator: Difficulties with the barrett-crane vertex [J].
Alesci, Emanuele ;
Rovelli, Carlo .
PHYSICAL REVIEW D, 2007, 76 (10)
[2]   SO(4, C)-covariant Ashtekar-Barbero gravity and the Immirzi parameter [J].
Alexandrov, S .
CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (20) :4255-4268
[3]   SU(2) loop quantum gravity seen from covariant theory -: art. no. 044009 [J].
Alexandrov, S ;
Livine, ER .
PHYSICAL REVIEW D, 2003, 67 (04)
[4]  
ALEXANDROV S, GRQC0612071
[5]   Spin foam model from canonical quantization [J].
Alexandrov, Sergei .
PHYSICAL REVIEW D, 2008, 77 (02)
[6]   Spin-foam models of Riemannian quantum gravity [J].
Baez, JC ;
Christensen, JD ;
Halford, TR ;
Tsang, DC .
CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (18) :4627-4648
[7]  
Baez JC, 1999, ADV THEOR MATH PHYS, V3, P815
[8]   A Lorentzian signature model for quantum general relativity [J].
Barrett, JW ;
Crane, L .
CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (16) :3101-3118
[9]   Graviton propagator in loop quantum gravity [J].
Bianchi, Eugenio ;
Modesto, Leonardo ;
Rovelli, Carlo ;
Speziale, Simone .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (23) :6989-7028
[10]   Hamiltonian analysis of Plebanski theory [J].
Buffenoir, E ;
Henneaux, M ;
Noui, K ;
Roche, P .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (22) :5203-5220