Non-canonical activation of Notch signaling/target genes in vertebrates

被引:74
作者
Sanalkumar, Rajendran [1 ]
Dhanesh, Sivadasan Bindu [1 ]
James, Jackson [1 ]
机构
[1] Rajiv Gandhi Ctr Biotechnol, Div Neurobiol, Neuro Stem Cell Biol Lab, Thiruvananthapuram 695014, Kerala, India
关键词
Notch signaling; CBF1-independent Notch; Hes-1; Non-canonical Notch; Neural differentiation; Tumorigenesis; NEURAL STEM-CELLS; BHLH TRANSCRIPTION FACTORS; RETINAL PROGENITOR CELLS; RBP-J; NEOPLASTIC TRANSFORMATION; INDEPENDENT PATHWAYS; FATE DETERMINATION; HES-1; EXPRESSION; BINDING PROTEIN; NERVOUS-SYSTEM;
D O I
10.1007/s00018-010-0391-x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Evolutionarily conserved Notch signaling orchestrates diverse physiological mechanisms during metazoan development and homeostasis. Classically, ligand-activated Notch receptors transduce the signaling cascade through the interaction of DNA-bound CBF1-co-repressor complex. However, recent reports have demonstrated execution of a CBF1-independent Notch pathway through signaling cross-talks in various cells/tissues. Here, we have tried to congregate the reports that describe the non-canonical/CBF1-independent Notch signaling and target gene activation in vertebrates with specific emphasis on their functional relevance.
引用
收藏
页码:2957 / 2968
页数:12
相关论文
共 106 条
[1]  
Androutsellis-Theotokis A, 2006, NATURE, V442, P823, DOI 10.1038/nature04940
[2]   Brain lipid-binding protein is a direct target of Notch signaling in radial glial cells [J].
Anthony, TE ;
Mason, HA ;
Gridley, T ;
Fishell, G ;
Heintz, N .
GENES & DEVELOPMENT, 2005, 19 (09) :1028-1033
[3]   Notch signalling controls pancreatic cell differentiation [J].
Apelqvist, Å ;
Li, H ;
Sommer, L ;
Beatus, P ;
Anderson, DJ ;
Honjo, T ;
de Angelis, MH ;
Lendahl, U ;
Edlund, H .
NATURE, 1999, 400 (6747) :877-881
[4]   CSL-independent Notch signalling: a checkpoint in cell fate decisions during development? [J].
Arias, AM ;
Zecchini, V ;
Brennan, K .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2002, 12 (05) :524-533
[5]   Notch signaling: Cell fate control and signal integration in development [J].
Artavanis-Tsakonas, S ;
Rand, MD ;
Lake, RJ .
SCIENCE, 1999, 284 (5415) :770-776
[6]   Notch signaling in leukemia [J].
Aster, Jon C. ;
Pear, Warren S. ;
Blacklow, Stephen C. .
ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE, 2008, 3 :587-613
[7]   Both E12 and E47 allow commitment to the B cell lineage [J].
Bain, G ;
Maandag, ECR ;
Riele, HPJT ;
Feeney, AJ ;
Sheehy, A ;
Schlissel, M ;
Shinton, SA ;
Hardy, RR ;
Murre, C .
IMMUNITY, 1997, 6 (02) :145-154
[8]   A notch-independent activity of suppressor of hairless is required for normal mechanoreceptor physiology [J].
Barolo, S ;
Walker, RG ;
Polyanovsky, AD ;
Freschi, G ;
Keil, T ;
Posakony, JW .
CELL, 2000, 103 (06) :957-969
[9]   Three habits of highly effective signaling pathways: principles of transcriptional control by developmental cell signaling [J].
Barolo, S ;
Posakony, JW .
GENES & DEVELOPMENT, 2002, 16 (10) :1167-1181
[10]   The Notch transcription activation complex makes its move [J].
Barrick, D ;
Kopan, R .
CELL, 2006, 124 (05) :883-885