Crossover to non-universal microscopic spectral fluctuations in lattice gauge theory

被引:37
作者
Berbenni-Bitsch, ME [1 ]
Gockeler, M
Guhr, T
Jackson, AD
Ma, JZ
Meyer, S
Schafer, A
Weidenmuller, HA
Wettig, T
Wilke, T
机构
[1] Univ Kaiserslautern, Fachbereich Phys Theoret Phys, D-67663 Kaiserslautern, Germany
[2] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany
[3] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany
[4] Niels Bohr Inst, DK-2100 Copenhagen O, Denmark
[5] Tech Univ Munich, Inst Theoret Phys, D-85747 Garching, Germany
关键词
chiral random matrix models; lattice simulations of QCD; spectrum of the dirac operator; scalar susceptibility; universal behaviour; Thouless energy;
D O I
10.1016/S0370-2693(98)01042-9
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The spectrum of the Dirac operator near zero virtuality obtained in lattice gauge simulations is known to be universally described by chiral random matrix theory. We address the question of the maximum energy for which this universality persists. For this purpose, we analyze large ensembles of complete spectra of the Euclidean Dirac operator for staggered fermions. We calculate the disconnected scalar susceptibility and the microscopic number variance for the chiral symplectic ensemble of random matrices and compare the results with lattice Dirac spectra for quenched SU(2). The crossover to a non-universal regime is clearly identified and found to scale with the square of the linear lattice size and with f(pi)(2), in agreement with theoretical expectations. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:14 / 20
页数:7
相关论文
共 27 条
[1]   Universality of random matrices in the microscopic limit and the Dirac operator spectrum [J].
Akemann, G ;
Damgaard, PH ;
Magnea, U ;
Nishigaki, S .
NUCLEAR PHYSICS B, 1997, 487 (03) :721-738
[2]   CHIRAL SYMMETRY-BREAKING IN CONFINING THEORIES [J].
BANKS, T ;
CASHER, A .
NUCLEAR PHYSICS B, 1980, 169 (1-2) :103-125
[3]   Microscopic universality in the spectrum of the lattice Dirac operator [J].
Berbenni-Bitsch, ME ;
Meyer, S ;
Schafer, A ;
Verbaarschot, JJM ;
Wettig, T .
PHYSICAL REVIEW LETTERS, 1998, 80 (06) :1146-1149
[4]   A NUMERICAL-SIMULATION OF QUENCHED SU(2) LATTICE GAUGE-THEORY [J].
BILLOIRE, A ;
LACAZE, R ;
MARINARI, E ;
MOREL, A .
NUCLEAR PHYSICS B, 1985, 251 (04) :581-623
[5]   UNIVERSAL CORRELATIONS FOR DETERMINISTIC PLUS RANDOM HAMILTONIANS [J].
BREZIN, E ;
HIKAMI, S ;
ZEE, A .
PHYSICAL REVIEW E, 1995, 51 (06) :5442-5452
[6]  
DIAKONOV DI, 1985, ZH EKSP TEOR FIZ, V62, P204
[7]   CHIRAL CONDENSATE IN THE INSTANTON VACUUM [J].
DYAKONOV, DI ;
PETROV, VY .
PHYSICS LETTERS B, 1984, 147 (4-5) :351-356
[8]  
FRAHM K, CONDMAT9801298
[9]   Universal spectral correlations of the Dirac operator at finite temperature [J].
Guhr, T ;
Wettig, T .
NUCLEAR PHYSICS B, 1997, 506 (03) :589-611
[10]  
Guhr T, 1998, PHYS REP, V299, P190