Performance comparison of AlGaAs, GaAs and InGaP tunnel junctions for concentrated multijunction solar cells

被引:64
作者
Wheeldon, Jeffrey F. [1 ]
Valdivia, Christopher E. [1 ]
Walker, Alexandre W. [1 ]
Kolhatkar, Gitanjali [1 ]
Jaouad, Abdelatif [2 ]
Turala, Artur [2 ]
Riel, Bruno [3 ]
Masson, Denis [3 ]
Puetz, Norbert [3 ]
Fafard, Simon [3 ]
Ares, Richard [2 ]
Aimez, Vincent [2 ]
Hall, Trevor J. [1 ]
Hinzer, Karin [1 ]
机构
[1] Univ Ottawa, Ctr Res Photon, Ottawa, ON, Canada
[2] Univ Sherbrooke, Ctr Rech Nanofabricat & Nanocaraceterisat CRN2, Sherbrooke, PQ J1K 2R1, Canada
[3] Cyrium Technol Inc, Ottawa, ON, Canada
来源
PROGRESS IN PHOTOVOLTAICS | 2011年 / 19卷 / 04期
基金
加拿大自然科学与工程研究理事会;
关键词
concentrated photovoltaics; tunnel junctions; AlGaAs; GaAs; InGaP; multijunction solar cell;
D O I
10.1002/pip.1056
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Four tunnel junction (TJ) designs for multijunction (MJ) solar cells under high concentration are studied to determine the peak tunnelling current and resistance change as a function of the doping concentration. These four TJ designs are: AlGaAs/AlGaAs, GaAs/GaAs, AlGaAs/InGaP and AlGaAs/GaAs. Time-dependent and time-average methods are used to experimentally characterize the entire current-voltage profile of TJ mesa structures. Experimentally calibrated numerical models are used to determine the minimum doping concentration required for each TJ design to operate within a MJ solar cell up to 2000-suns concentration. The AlGaAs/GaAs TJ design is found to require the least doping concentration to reach a resistance of <10(-4) Omega cm(2) followed by the GaAs/GaAs TJ and finally the AlGaAs/AlGaAs TJ. The AlGaAs/InGaP TJ is only able to obtain resistances of >= 5 x 10(-4) Omega cm(2) within the range of doping concentrations studied. Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:442 / 452
页数:11
相关论文
共 23 条
[1]   GAAS, ALAS, AND ALXGA1-XAS - MATERIAL PARAMETERS FOR USE IN RESEARCH AND DEVICE APPLICATIONS [J].
ADACHI, S .
JOURNAL OF APPLIED PHYSICS, 1985, 58 (03) :R1-R29
[2]  
[Anonymous], 1999, HDB SERIES SEMICONDU
[3]  
BANK RE, 1983, IEEE T ELECTRON DEV, V30, P1031, DOI 10.1109/T-ED.1983.21257
[4]  
BAUDRIT M, 2009, SIMULATION STANDARD, V19, P1
[5]  
*CYR TECHN INC, IS COMM PROD ITS QDE
[6]  
Forster A., 1993, Adv. in Solid State Phys, V33, P37
[7]   40.8% efficient inverted triple-junction solar cell with two independently metamorphic junctions [J].
Geisz, J. F. ;
Friedman, D. J. ;
Ward, J. S. ;
Duda, A. ;
Olavarria, W. J. ;
Moriarty, T. E. ;
Kiehl, J. T. ;
Romero, M. J. ;
Norman, A. G. ;
Jones, K. M. .
APPLIED PHYSICS LETTERS, 2008, 93 (12)
[8]   I-V characterization of tunnel diodes and multijunction solar cells [J].
Guter, Wolfgang ;
Bett, Andreas W. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2006, 53 (09) :2216-2222
[9]   Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight [J].
Guter, Wolfgang ;
Schoene, Jan ;
Philipps, Simon P. ;
Steiner, Marc ;
Siefer, Gerald ;
Wekkeli, Alexander ;
Welser, Elke ;
Oliva, Eduard ;
Bett, Andreas W. ;
Dimroth, Frank .
APPLIED PHYSICS LETTERS, 2009, 94 (22)
[10]   Numerical simulation of tunnel diodes for multi-junction solar cells [J].
Hermle, A. ;
Letay, G. ;
Philipps, S. P. ;
Bett, A. W. .
PROGRESS IN PHOTOVOLTAICS, 2008, 16 (05) :409-418