Multiscale modeling of thermal conductivity of polymer/carbon nanocomposites

被引:44
作者
Clancy, T. C. [1 ]
Frankland, S. J. V. [1 ]
Hinkley, J. A. [2 ]
Gates, T. S. [2 ]
机构
[1] Natl Inst Aerosp, Hampton, VA 23666 USA
[2] NASA, Langley Res Ctr, Hampton, VA 23681 USA
关键词
Simulation; Thermal conductivity; Nanocomposite; Carbon nanotube; Polymer; CARBON-NANOTUBE COMPOSITES; MOLECULAR-DYNAMICS; GRAPHITE NANOCOMPOSITES; HEAT-FLOW; RESISTANCE;
D O I
10.1016/j.ijthermalsci.2010.05.007
中图分类号
O414.1 [热力学];
学科分类号
摘要
Molecular dynamics simulation was used to estimate the interfacial thermal (Kapitza) resistance between nanoparticles and amorphous and crystalline polymer matrices. Bulk thermal conductivities of the nanocomposites were then estimated using an established effective medium approach. To study functionalization, oligomeric ethylene vinyl alcohol copolymers were chemically bonded to a single wall carbon nanotube. The results, in a poly(ethylene vinyl acetate) matrix, are similar to those obtained previously for grafted linear hydrocarbon chains. To study the effect of non-covalent functionalization, two types of polyethylene matrices. aligned (extended-chain crystalline) vs. amorphous (random coils) were modeled. Both matrices produced the same interfacial thermal resistance values. Finally, functionalization of edges and faces of plate-like graphite nanoparticles was found to be only modestly effective in reducing the interfacial thermal resistance and improving the composite thermal conductivity. (C) 2010 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1555 / 1560
页数:6
相关论文
共 20 条
[1]  
Allen M. P., 1987, COMPUTER SIMULATION
[2]   The structure of a poly(ethylene oxide) melt from neutron scattering and molecular dynamics simulations [J].
Annis, BK ;
Borodin, O ;
Smith, GD ;
Benmore, CJ ;
Soper, AK ;
Londono, JD .
JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (23) :10998-11003
[3]   Unusually high thermal conductivity of carbon nanotubes [J].
Berber, S ;
Kwon, YK ;
Tománek, D .
PHYSICAL REVIEW LETTERS, 2000, 84 (20) :4613-4616
[4]   Carbon nanotube composites for thermal management [J].
Biercuk, MJ ;
Llaguno, MC ;
Radosavljevic, M ;
Hyun, JK ;
Johnson, AT ;
Fischer, JE .
APPLIED PHYSICS LETTERS, 2002, 80 (15) :2767-2769
[5]   Structure-property relationships in polymer composites with micrometer and submicrometer graphite platelets [J].
Chasiotis, I ;
Chen, Q ;
Odegard, GM ;
Gates, TS .
EXPERIMENTAL MECHANICS, 2005, 45 (06) :507-516
[6]   Modeling of interfacial modification effects on thermal conductivity of carbon nanotube composites [J].
Clancy, Thomas C. ;
Gates, Thomas S. .
POLYMER, 2006, 47 (16) :5990-5996
[7]   Thermal conductivity of exfoliated graphite nanocomposites [J].
Fukushima, H. ;
T Drzal, L. ;
Rook, B. P. ;
Rich, M. J. .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2006, 85 (01) :235-238
[8]   Ethylene vinyl acetate/expanded graphite nanocomposites by solution intercalation: preparation, characterization and properties [J].
George, Jinu Jacob ;
Bhowmick, Anil K. .
JOURNAL OF MATERIALS SCIENCE, 2008, 43 (02) :702-708
[9]   Thermal conductivity of ethylene vinyl acetate copolymer/nanofiller blends [J].
Ghose, S. ;
Watson, K. A. ;
Working, D. C. ;
Connell, J. W. ;
Smith, J. G., Jr. ;
Sun, Y. P. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2008, 68 (7-8) :1843-1853
[10]   Mobility enhancement in amorphous polyamide 6,6 induced by water sorption:: A molecular dynamics simulation study [J].
Goudeau, S ;
Charlot, M ;
Müller-Plathe, F .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (48) :18779-18788