In this paper, we propose and analyze an electrically modulated silicon-on-insulator (SOI) submicrometer-size high-index-contrast waveguide. The geometry of the waveguide provides high lateral optical confinement and defines a lateral p-i-n diode. The electrooptic structure is electrically and optically modeled. The effect of the waveguide geometry on the device performance is studied. Our calculations indicate that this scheme can be used to implement submicrometer high-index-contrast waveguide active devices on SOL As an example of application, a one-dimensional microcavity intensity modulator is predicted to exhibit a modulation depth as high as 80% by employing a dc power consumption as low as 14 muW.