Mathematical Modeling of Lithium Iron Phosphate Electrode: Galvanostatic Charge/Discharge and Path Dependence

被引:147
作者
Safari, M. [1 ,2 ]
Delacourt, C. [1 ]
机构
[1] Univ Picardie Jules Verne, CNRS, UMR 6007, Lab React & Chim Solides, F-80039 Amiens, France
[2] Renault Res Dept, F-78288 Guyancourt, France
关键词
ENERGY-LOSS SPECTROSCOPY; LI-ION BATTERIES; ROOM-TEMPERATURE; DISCHARGE MODEL; DIFFUSION-COEFFICIENT; LIFEPO4; ELECTRODE; MISCIBILITY GAP; LIXFEPO4; PERFORMANCE; CATHODES;
D O I
10.1149/1.3515902
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Based on the resistive-reactant concept, a simple mathematical model for lithium intercalation/deintercalation in a lithium iron phosphate electrode is developed. Demonstrative experiments are provided to shed light on the resistive-reactant feature of this electrode. Without embedding any special feature of the two-phase process, the model consists of regular concentration-dependent lithium diffusion inside four groups of active-material particles that have different connectivities to the conductive matrix of the electrode. Model-experiment comparisons reveal the effectiveness of the resistive-reactant concept for a quantitative description of the charge/discharge as well as the path dependence observed in lithium iron phosphate electrodes. (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3515902] All rights reserved.
引用
收藏
页码:A63 / A73
页数:11
相关论文
共 53 条
[1]   Phase-transformation wave dynamics in LiFePO4 [J].
Burch, Damian ;
Singh, Gogi ;
Ceder, Gerbrand ;
Bazant, Martin Z. .
THEORY, MODELING AND NUMERICAL SIMULATION OF MULTI-PHYSICS MATERIALS BEHAVIOR, 2008, 139 :95-+
[2]   Size-Dependent Spinodal and Miscibility Gaps for Intercalation in Nanoparticles [J].
Burch, Damian ;
Bazant, Martin Z. .
NANO LETTERS, 2009, 9 (11) :3795-3800
[3]   Continuity and performance in composite electrodes [J].
Chen, Guoying ;
Richardson, Thomas J. .
JOURNAL OF POWER SOURCES, 2010, 195 (16) :5387-5390
[4]   Electron microscopy study of the LiFePO4 to FePO4 phase transition [J].
Chen, GY ;
Song, XY ;
Richardson, TJ .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (06) :A295-A298
[5]   Determination of lithium diffusion coefficient in LiFePO4 electrode by galvanostatic and potentiostatic intermittent titration techniques [J].
Churikov, A. V. ;
Ivanishchev, A. V. ;
Ivanishcheva, I. A. ;
Sycheva, V. O. ;
Khasanova, N. R. ;
Antipov, E. V. .
ELECTROCHIMICA ACTA, 2010, 55 (08) :2939-2950
[6]   Predicting Active Material Utilization in LiFePO4 Electrodes Using a Multiscale Mathematical Model [J].
Dargaville, S. ;
Farrell, T. W. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (07) :A830-A840
[7]   Size effects on carbon-free LiFePO4 powders [J].
Delacourt, C. ;
Poizot, P. ;
Levasseur, S. ;
Masquelier, C. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (07) :A352-A355
[8]   Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe, Mn) electrode materials [J].
Delacourt, C ;
Laffont, L ;
Bouchet, R ;
Wurm, C ;
Leriche, JB ;
Morcrette, M ;
Tarascon, JM ;
Masquelier, C .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (05) :A913-A921
[9]   The role of carbon black distribution in cathodes for Li ion batteries [J].
Dominko, R ;
Gaberscek, M ;
Drofenik, J ;
Bele, M ;
Pejovnik, S ;
Jamnik, J .
JOURNAL OF POWER SOURCES, 2003, 119 :770-773
[10]   MODELING OF GALVANOSTATIC CHARGE AND DISCHARGE OF THE LITHIUM POLYMER INSERTION CELL [J].
DOYLE, M ;
FULLER, TF ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (06) :1526-1533