Emerging roles of S-nitrosylation in protein misfolding and neurodegenerative diseases

被引:94
作者
Nakamura, Tomohiro
Lipton, Stuart A.
机构
[1] Univ Calif San Diego, Dept Neurosci, La Jolla, CA 92039 USA
[2] Burnham Inst Med Res, Ctr Neurosci & Aging, La Jolla, CA USA
关键词
D O I
10.1089/ars.2007.1858
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Overactivation of N-methyl-D-aspartate (NMDA)-type glutamate receptors accounts, at least in part, for excitotoxic neuronal damage, potentially contributing to a wide range of acute and chronic neurologic disorders. Recent studies have suggested that generation of excessive nitric oxide (NO) and reactive oxygen species (ROS) can mediate excitotoxicity, in part by triggering protein misfolding. S-Nitrosylation, which is a covalent reaction of a NO group with a cysteine thiol, represents one such mechanism that can contribute to NO-induced neurotoxicity. The ubiquitin-proteasome system (UPS), in conjunction with molecular chaperones, can prevent accumulation of aberrantly-folded proteins. For example, protein disulfide isomerase (PDI) can provide neuroprotection from misfolded proteins or endoplasmic reticulum stress through its molecular chaperone and thiol-disulfide oxidoreductase activities. Here, the authors present recent evidence suggesting that NO contributes to degenerative conditions by S-nitrosylating PDI (forming SNO-PDI) and the ubiquitin protein ligase, parkin (forming SNO-parkin). Moreover, it is demonstrated for the first time that inhibition of excessive NMDA receptor activity by memantine, via a mechanism of uncompetitive open-channel block with a relatively rapid off-rate, can ameliorate excessive production of NO, protein misfolding, and neurodegeneration.
引用
收藏
页码:87 / 101
页数:15
相关论文
共 154 条
[1]   Expanding insights of mitochondrial dysfunction in Parkinson's disease [J].
Abou-Sleiman, PM ;
Muqit, MMK ;
Wood, NW .
NATURE REVIEWS NEUROSCIENCE, 2006, 7 (03) :207-219
[2]   NITRIC-OXIDE SYNTHASES REVEAL A ROLE FOR CALMODULIN IN CONTROLLING ELECTRON-TRANSFER [J].
ABUSOUD, HM ;
STUEHR, DJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (22) :10769-10772
[3]  
Andrews DW, 1996, TRENDS BIOCHEM SCI, V21, P365
[4]   GLUTAMATE-INDUCED NEURONAL DEATH - A SUCCESSION OF NECROSIS OR APOPTOSIS DEPENDING ON MITOCHONDRIAL-FUNCTION [J].
ANKARCRONA, M ;
DYPBUKT, JM ;
BONFOCO, E ;
ZHIVOTOVSKY, B ;
ORRENIUS, S ;
LIPTON, SA ;
NICOTERA, P .
NEURON, 1995, 15 (04) :961-973
[5]   Identification of cysteines involved in S-nitrosylation, S-glutathionylation, and oxidation to disulfides in ryanodine receptor type 1 [J].
Aracena-Parks, Paula ;
Goonasekera, Sanjeewa A. ;
Gilman, Charles P. ;
Dirksen, Robert T. ;
Hidalgo, Cecilia ;
Hamilton, Susan L. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (52) :40354-40368
[6]   The unusually stable quaternary structure of human Cu,Zn-superoxide dismutase 1 is controlled by both metal occupancy and disulfide status [J].
Arnesano, F ;
Banci, L ;
Bertini, I ;
Martinelli, M ;
Furukawa, Y ;
O'Halloran, TV .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (46) :47998-48003
[7]   Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death [J].
Arrasate, M ;
Mitra, S ;
Schweitzer, ES ;
Segal, MR ;
Finkbeiner, S .
NATURE, 2004, 431 (7010) :805-810
[8]   RETRACTED: Induction of the unfolded protein response in familial amyotrophic lateral sclerosis and association of protein-disulfide isomerase with superoxide dismutase 1 (Retracted article. See vol. 292, pg. 12007, 2017) [J].
Atkin, Julie D. ;
Farg, Manal A. ;
Turner, Bradley J. ;
Tomas, Doris ;
Lysaght, Judith A. ;
Nunan, Janelle ;
Rembach, Alan ;
Nagley, Phillip ;
Beart, Philip M. ;
Cheema, Surindar S. ;
Horne, Malcolm K. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (40) :30152-30165
[9]   Chaperone suppression of α-synuclein toxicity in a Drosophila model for Parkinson's disease [J].
Auluck, PK ;
Chan, HYE ;
Trojanowski, JQ ;
Lee, VMY ;
Bonini, NM .
SCIENCE, 2002, 295 (5556) :865-868
[10]   Neurodegenerative diseases and oxidative stress [J].
Barnham, KJ ;
Masters, CL ;
Bush, AI .
NATURE REVIEWS DRUG DISCOVERY, 2004, 3 (03) :205-214