A Series of Simple Oligomer-like Small Molecules Based on Oligothiophenes for Solution-Processed Solar Cells with High Efficiency

被引:791
作者
Kan, Bin [1 ,2 ,3 ,4 ]
Li, Miaomiao [1 ,2 ,3 ,4 ]
Zhang, Qian [1 ,2 ,3 ,4 ]
Liu, Feng [5 ]
Wan, Xiangjian [1 ,2 ,3 ,4 ]
Wang, Yunchuang [1 ,2 ,3 ,4 ]
Ni, Wang [1 ,2 ,3 ,4 ]
Long, Guankui [1 ,2 ,3 ,4 ]
Yang, Xuan [1 ,2 ,3 ,4 ]
Feng, Huanran [1 ,2 ,3 ,4 ]
Zuo, Yi [1 ,2 ,3 ,4 ]
Zhang, Mingtao [7 ]
Huang, Fei [6 ]
Cao, Yong [6 ]
Russell, Thomas P. [5 ]
Chen, Yongsheng [1 ,2 ,3 ,4 ]
机构
[1] Nankai Univ, Coll Chem, State Key Lab, Tianjin 300071, Peoples R China
[2] Nankai Univ, Coll Chem, Inst Elementoorgan Chem, Tianjin 300071, Peoples R China
[3] Nankai Univ, Coll Chem, Ctr Nanoscale Sci & Technol, Inst Polymer Chem, Tianjin 300071, Peoples R China
[4] Nankai Univ, Coll Chem, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300071, Peoples R China
[5] Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA
[6] S China Univ Technol, State Key Lab Luminescent Mat & Devices, Guangzhou 510640, Guangdong, Peoples R China
[7] Nankai Univ, Coll Chem, Computat Ctr Mol Sci, Tianjin 300071, Peoples R China
关键词
POWER CONVERSION EFFICIENCY; CONJUGATED POLYMERS; BENZODITHIOPHENE UNIT; ORGANIC PHOTOVOLTAICS; BULK HETEROJUNCTIONS; FILL-FACTORS; PERFORMANCE; MORPHOLOGY; RECOMBINATION; DESIGN;
D O I
10.1021/jacs.5b00305
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A series of acceptor-donor-acceptor simple oligomer-like small molecules based on oligothiophenes, namely, DRCN4T-DRCN9T, were designed and synthesized. Their optical, electrical, and thermal properties and photovoltaic performances were systematically investigated. Except for DRCN4T, excellent performances were obtained for DRCN5T-DRCN9T. The devices based on DRCN5T, DRCN7T, and DRCN9T with axisyrnmetric chemical structures exhibit much higher short-circuit current densities than those based on DRCN6T and DRCN8T with centrosymmetric chemical structures, which is attributed to their well-developed fibrillar network with a feature size less than 20 nm. The devices based on DRCN5T/PC71BM showed a notable certified power conversion efficiency (PCE) of 10.10% under AM 1.5G irradiation (100 mW cm(-2)) using a simple solution spin-coating fabrication process. This is the highest PCE for single-junction small-molecule-based organic photovoltaics (OPVs) reported to date. DRCN5T is a rather simpler molecule compared with all of the other high-performance molecules in OPVs to date, and this might highlight its advantage in the future possible commercialization of OPVs. These results demonstrate that a fine and balanced modification/design of chemical structure can make significant performance differences and that the performance of solution-processed small-molecule-based solar cells can be comparable to or even surpass that of their polymer counterparts.
引用
收藏
页码:3886 / 3893
页数:8
相关论文
共 58 条
[1]   Highly efficient organic tandem solar cells: a follow up review [J].
Ameri, Tayebeh ;
Li, Ning ;
Brabec, Christoph J. .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (08) :2390-2413
[2]   Molecular Design and Ordering Effects in π-Functional Materials for Transistor and Solar Cell Applications [J].
Beaujuge, Pierre M. ;
Frechet, Jean M. J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (50) :20009-20029
[3]   Influence of blend microstructure on bulk heterojunction organic photovoltaic performance [J].
Brabec, Christoph J. ;
Heeney, Martin ;
McCulloch, Iain ;
Nelson, Jenny .
CHEMICAL SOCIETY REVIEWS, 2011, 40 (03) :1185-1199
[4]   Mediating Solar Cell Performance by Controlling the Internal Dipole Change in Organic Photovoltaic Polymers [J].
Carsten, Bridget ;
Szarko, Jodi M. ;
Lu, Luyao ;
Son, Hae Jung ;
He, Feng ;
Botros, Youssry Y. ;
Chen, Lin X. ;
Yu, Luping .
MACROMOLECULES, 2012, 45 (16) :6390-6395
[5]   An Efficient Triple-Junction Polymer Solar Cell Having a Power Conversion Efficiency Exceeding 11% [J].
Chen, Chun-Chao ;
Chang, Wei-Hsuan ;
Yoshimura, Ken ;
Ohya, Kenichiro ;
You, Jingbi ;
Gao, Jing ;
Hong, Zirou ;
Yang, Yang .
ADVANCED MATERIALS, 2014, 26 (32) :5670-+
[6]   Single-Junction Polymer Solar Cells Exceeding 10% Power Conversion Efficiency [J].
Chen, Jing-De ;
Cui, Chaohua ;
Li, Yan-Qing ;
Zhou, Lei ;
Ou, Qing-Dong ;
Li, Chi ;
Li, Yongfang ;
Tang, Jian-Xin .
ADVANCED MATERIALS, 2015, 27 (06) :1035-1041
[7]   High Performance Photovoltaic Applications Using Solution-Processed Small Molecules [J].
Chen, Yongsheng ;
Wan, Xiangjian ;
Long, Guankui .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (11) :2645-2655
[8]   How the structural deviations on the backbone of conjugated polymers influence their optoelectronic properties and photovoltaic performance [J].
Chochos, Christos L. ;
Choulis, Stelios A. .
PROGRESS IN POLYMER SCIENCE, 2011, 36 (10) :1326-1414
[9]   Design and Synthesis of Molecular Donors for Solution-Processed High-Efficiency Organic Solar Cells [J].
Coughlin, Jessica E. ;
Henson, Zachary B. ;
Welch, Gregory C. ;
Bazan, Guillermo C. .
ACCOUNTS OF CHEMICAL RESEARCH, 2014, 47 (01) :257-270
[10]   25th Anniversary Article: A Decade of Organic/Polymeric Photovoltaic Research [J].
Dou, Letian ;
You, Jingbi ;
Hong, Ziruo ;
Xu, Zheng ;
Li, Gang ;
Street, Robert A. ;
Yang, Yang .
ADVANCED MATERIALS, 2013, 25 (46) :6642-6671