Characteristics of atmospheric pressure N2 cold plasma torch using 60-Hz AC power and its application to polymer surface modification

被引:57
作者
Choi, YH
Kim, JH
Paek, KH
Ju, WT
Hwang, YS
机构
[1] Seoul Natl Univ, Dept Nucl Engn, Seoul 151742, South Korea
[2] Plasnix Co Ltd, Seoul 151742, South Korea
关键词
atmospheric pressure; N-2 cold plasma; polypropylene; adhesion; bonding strength;
D O I
10.1016/j.surfcoat.2004.08.145
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Atmospheric pressure N-2 cold plasmas are generated with a torch-type generator using 60-Hz AC power. High flow rate N-2 gas is injected into the plasma generator and high voltage of about 2 W is introduced into the power electrode through transformer. Discharge characteristics of N-2 cold plasma, such as current-voltage profile, gas temperature and radial species in plasma, are measured. As one possible application, the N-2 cold plasma is used to modify the surface of polymer, especially polypropylene, for adhesion improvement. Power dissipation in discharge has the maximum value at optimal power electrode position, z=3 mm, which lead to the generation of more energetic electrons capable of creating N-2* and N-2(+) excited states in plasmas effectively. These excited species can induce high population of oxygen and nitrogen atoms on polymer surface through creation of polymer excited states. Maximum bonding strength about 10.5 MPa is obtained at optimal power electrode position. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:319 / 324
页数:6
相关论文
共 10 条
[1]   Characterization of a low-energy constricted-plasma source [J].
Anders, A ;
Kuhn, M .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1998, 69 (03) :1340-1343
[2]   Deposition of silicon dioxide films with an atmospheric-pressure plasma jet [J].
Babayan, SE ;
Jeong, JY ;
Tu, VJ ;
Park, J ;
Selwyn, GS ;
Hicks, RF .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 1998, 7 (03) :286-288
[3]   Transition from glow silent discharge to micro-discharges in nitrogen gas [J].
Gherardi, N ;
Gouda, G ;
Gat, E ;
Ricard, A ;
Massines, F .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2000, 9 (03) :340-346
[4]   Etching materials with an atmospheric-pressure plasma jet [J].
Jeong, JY ;
Babayan, SE ;
Tu, VJ ;
Park, J ;
Henins, I ;
Hicks, RF ;
Selwyn, GS .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 1998, 7 (03) :282-285
[5]   A novel low temperature plasma generator with alumina coated electrode for open air material processing [J].
Koide, M ;
Horiuchi, T ;
Inushima, T ;
Lee, BJ ;
Tobayama, M ;
Koinuma, H .
THIN SOLID FILMS, 1998, 316 (1-2) :65-67
[6]   Generation of large-volume, atmospheric-pressure, nonequilibrium plasmas [J].
Kunhardt, EE .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2000, 28 (01) :189-200
[7]   Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier [J].
Massines, F ;
Rabehi, A ;
Decomps, P ;
Gadri, RB ;
Segur, P ;
Mayoux, C .
JOURNAL OF APPLIED PHYSICS, 1998, 83 (06) :2950-2957
[8]   An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials [J].
Montie, TC ;
Kelly-Wintenberg, K ;
Roth, JR .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2000, 28 (01) :41-50
[9]   The atmospheric-pressure plasma jet:: A review and comparison to other plasma sources [J].
Schütze, A ;
Jeong, JY ;
Babayan, SE ;
Park, J ;
Selwyn, GS ;
Hicks, RF .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 1998, 26 (06) :1685-1694
[10]   Direct current glow discharges in atmospheric air [J].
Stark, RH ;
Schoenbach, KH .
APPLIED PHYSICS LETTERS, 1999, 74 (25) :3770-3772