Histone proteomics and the epigenetic regulation of nucleosome mobility

被引:52
作者
Cosgrove, Michael S. [1 ]
机构
[1] Syracuse Univ, Dept Biol, Syracuse, NY 13244 USA
关键词
ASF1; epigenetics; euchromatin; H3K56; H3K56ac; heterochromatin; histone; histone acetylation; HST3; HST4; modification; nucleosome; RTT109; silencing; SPT10; swi/snf; transcription; H3; LYSINE-56; ACETYLATION; TIME-OF-FLIGHT; POSTTRANSLATIONAL MODIFICATIONS; RNA-POLYMERASE; CELL-CYCLE; MASS-SPECTROMETRY; METHYLATION SITES; CORE HISTONES; H2B VARIANTS; CHROMATIN;
D O I
10.1586/14789450.4.4.465
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Chromatin structure plays a vital role in the transmission of heritable gene expression patterns. The recent application of mass spectrometry to histone biology provides several striking insights into chromatin regulation. The continuing identification of new histone postmodifications is revolutionizing the ways in which we think about how access to genomic DNA is controlled. While post-translational modifications of the flexible histone tails continue to be an active area of investigation, the recent discovery of multiple modifications in the structured globular domains of histones provides new insights into how nucleosome works. Recent experiments underscore the importance of a subgroup of modifications: those that regulate histone-DNA interactions on the lateral surface of nucleosome. This information highlights an emerging new paradigm in chromatin control, that of the epigenetic regulation of nucleosome mobility.
引用
收藏
页码:465 / 478
页数:14
相关论文
共 93 条
[31]   Histone modifications: Combinatorial complexity or cumulative simplicity? [J].
Henikoff, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (15) :5308-5309
[32]   The SIN domain of the histone octamer is essential for intramolecular folding of nucleosomal arrays [J].
Horn, PJ ;
Crowley, KA ;
Carruthers, LM ;
Hansen, JC ;
Peterson, CL .
NATURE STRUCTURAL BIOLOGY, 2002, 9 (03) :167-171
[33]   Insights into the role of histone H3 and histone H4 core modifiable residues in Saccharomyces cerevisiae [J].
Hyland, EA ;
Cosgrove, MS ;
Molina, H ;
Wang, DX ;
Pandey, A ;
Cottee, RJ ;
Boeke, JD .
MOLECULAR AND CELLULAR BIOLOGY, 2005, 25 (22) :10060-10070
[34]   Nucleosome positions predicted through comparative genomics [J].
Ioshikhes, Ilya P. ;
Albert, Istvan ;
Zanton, Sara J. ;
Pugh, B. Franklin .
NATURE GENETICS, 2006, 38 (10) :1210-1215
[35]  
IZBAN MG, 1992, J BIOL CHEM, V267, P13647
[36]   Selective di- or trimethylation of histone H3 lysine 76 by two DOT1 homologs is important for cell cycle regulation in Trypanosoma brucei [J].
Janzen, Christian J. ;
Hake, Sandra B. ;
Lowell, Joanna E. ;
Cross, George A. M. .
MOLECULAR CELL, 2006, 23 (04) :497-507
[37]   Interpreting the protein language using proteomics [J].
Jensen, Ole N. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2006, 7 (06) :391-403
[38]   Translating the histone code [J].
Jenuwein, T ;
Allis, CD .
SCIENCE, 2001, 293 (5532) :1074-1080
[39]   Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14 [J].
Kasten, M ;
Szerlong, H ;
Erdjument-Bromage, H ;
Tempst, P ;
Werner, M ;
Cairns, BR .
EMBO JOURNAL, 2004, 23 (06) :1348-1359
[40]   EFFECTS OF HISTONE-H4 DEPLETION ON THE CELL-CYCLE AND TRANSCRIPTION OF SACCHAROMYCES-CEREVISIAE [J].
KIM, UJ ;
HAN, M ;
KAYNE, P ;
GRUNSTEIN, M .
EMBO JOURNAL, 1988, 7 (07) :2211-2219