Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin

被引:722
作者
Holland, William L. [1 ]
Miller, Russell A. [2 ]
Wang, Zhao V. [1 ]
Sun, Kai [1 ]
Barth, Brian M. [3 ]
Bui, Hai H. [4 ]
Davis, Kathryn E. [1 ]
Bikman, Benjamin T. [5 ]
Halberg, Nils [1 ,6 ]
Rutkowski, Joseph M. [1 ]
Wade, Mark R. [4 ]
Tenorio, Vincent M. [1 ]
Kuo, Ming-Shang [4 ]
Brozinick, Joseph T. [4 ]
Zhang, Bei B. [7 ]
Birnbaum, Morris J. [2 ]
Summers, Scott A. [3 ,5 ,8 ]
Scherer, Philipp E. [1 ,9 ]
机构
[1] Univ Texas SW Med Ctr Dallas, Touchstone Diabet Ctr, Dallas, TX 75390 USA
[2] Univ Penn, Sch Med, Inst Diabet Obes & Metab, Philadelphia, PA 19104 USA
[3] Colorado State Univ, Dept Biochem & Mol Biol, Ft Collins, CO 80523 USA
[4] Eli Lilly & Co, Lilly Corp Ctr, Indianapolis, IN 46285 USA
[5] Duke Natl Univ Singapore, Grad Sch Med, Program Cardiovasc & Metab Dis, Singapore, Singapore
[6] Univ Copenhagen, Dept Biomed Sci, Fac Hlth Sci, Copenhagen, Denmark
[7] Merck Res Labs, Dept Metab Disorders, Rahway, NJ USA
[8] Duke Univ, Med Ctr, Stedman Ctr Nutr & Metab Res, Durham, NC USA
[9] Univ Texas SW Med Ctr Dallas, Dept Cell Biol, Dallas, TX 75390 USA
基金
美国国家卫生研究院;
关键词
PROTEIN-KINASE; INSULIN SENSITIVITY; FATTY-ACIDS; MOUSE MODEL; PKC-ZETA; CELL; SPHINGOSINE; RESISTANCE; INHIBITION; APOPTOSIS;
D O I
10.1038/nm.2277
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The adipocyte-derived secretory factor adiponectin promotes insulin sensitivity, decreases inflammation and promotes cell survival. No unifying mechanism has yet explained how adiponectin can exert such a variety of beneficial systemic effects. Here, we show that adiponectin potently stimulates a ceramidase activity associated with its two receptors, AdipoR1 and AdipoR2, and enhances ceramide catabolism and formation of its antiapoptotic metabolite-sphingosine-1-phosphate (S1P)-independently of AMP-dependent kinase (AMPK). Using models of inducible apoptosis in pancreatic beta cells and cardiomyocytes, we show that transgenic overproduction of adiponectin decreases caspase-8-mediated death, whereas genetic ablation of adiponectin enhances apoptosis in vivo through a sphingolipid-mediated pathway. Ceramidase activity is impaired in cells lacking both adiponectin receptor isoforms, leading to elevated ceramide levels and enhanced susceptibility to palmitate-induced cell death. Combined, our observations suggest a unifying mechanism of action for the beneficial systemic effects exerted by adiponectin, with sphingolipid metabolism as its core upstream signaling component.
引用
收藏
页码:55 / U226
页数:11
相关论文
共 60 条
[21]   Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance [J].
Holland, William L. ;
Brozinick, Joseph T. ;
Wang, Li-Ping ;
Hawkins, Eric D. ;
Sargent, Katherine M. ;
Liu, Yanqi ;
Narra, Krishna ;
Hoehn, Kyle L. ;
Knotts, Trina A. ;
Siesky, Angela ;
Nelson, Don H. ;
Karathanasis, Sotirios K. ;
Fontenot, Greg K. ;
Birnbaum, Morris J. ;
Summers, Scott A. .
CELL METABOLISM, 2007, 5 (03) :167-179
[22]   PAQRs: A Counteracting Force to Ceramides? [J].
Holland, William L. ;
Scherer, Philipp E. .
MOLECULAR PHARMACOLOGY, 2009, 75 (04) :740-743
[23]   Adiponectin and AdipoR1 regulate PGC-1α and mitochondria by Ca2+ and AMPK/SIRT1 [J].
Iwabu, Masato ;
Yamauchi, Toshimasa ;
Okada-Iwabu, Miki ;
Sato, Koji ;
Nakagawa, Tatsuro ;
Funata, Masaaki ;
Yamaguchi, Mamiko ;
Namiki, Shigeyuki ;
Nakayama, Ryo ;
Tabata, Mitsuhisa ;
Ogata, Hitomi ;
Kubota, Naoto ;
Takamoto, Iseki ;
Hayashi, Yukiko K. ;
Yamauchi, Naoko ;
Waki, Hironori ;
Fukayama, Masashi ;
Nishino, Ichizo ;
Tokuyama, Kumpei ;
Ueki, Kohjiro ;
Oike, Yuichi ;
Ishii, Satoshi ;
Hirose, Kenzo ;
Shimizu, Takao ;
Touhara, Kazushige ;
Kadowaki, Takashi .
NATURE, 2010, 464 (7293) :1313-1319
[24]   Sphingosine Kinase and Sphingosine 1-Phosphate in Cardioprotection [J].
Karliner, Joel S. .
JOURNAL OF CARDIOVASCULAR PHARMACOLOGY, 2009, 53 (03) :189-197
[25]   Obesity-associated improvements in metabolic profile through expansion of adipose tissue [J].
Kim, Ja-Young ;
De Wall, Esther Van ;
Laplante, Mathieu ;
Azzara, Anthony ;
Trujillo, Maria E. ;
Hofmann, Susanna M. ;
Schraw, Todd ;
Durand, Jorge L. ;
Li, Hua ;
Li, Guangyu ;
Jelicks, Linda A. ;
Mehler, Mark F. ;
Hui, David Y. ;
Deshaies, Yves ;
Shulman, Gerald I. ;
Schwartz, Gary J. ;
Scherer, Philipp E. .
JOURNAL OF CLINICAL INVESTIGATION, 2007, 117 (09) :2621-2637
[26]   PKC-θ knockout mice are protected from fat-induced insulin resistance [J].
Kim, JK ;
Fillmore, JJ ;
Sunshine, MJ ;
Albrecht, B ;
Higashimori, T ;
Kim, DW ;
Liu, ZX ;
Soos, TJ ;
Cline, GW ;
O'Brien, WR ;
Littman, DR ;
Shulman, GI .
JOURNAL OF CLINICAL INVESTIGATION, 2004, 114 (06) :823-827
[27]   Sphingosine is a novel activator of 3-phosphoinositide-dependent kinase 1 [J].
King, CC ;
Zenke, FT ;
Dawson, PE ;
Dutil, EM ;
Newton, AC ;
Hemmings, BA ;
Bokoch, GM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (24) :18108-18113
[28]   Disruption of adiponectin causes insulin resistance and neointimal formation. [J].
Kubota, N ;
Terauchi, Y ;
Yamauchi, T ;
Kubota, T ;
Moroi, M ;
Matsui, J ;
Eto, K ;
Yamashita, T ;
Kamon, J ;
Satoh, H ;
Yano, W ;
Froguel, P ;
Nagai, R ;
Kimura, S ;
Kadowaki, T ;
Noda, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (29) :25863-25866
[29]   Probing the mechanism of FET3 repression by Izh2p overexpression [J].
Kupchak, Brian R. ;
Garitaonandia, Ibon ;
Villa, Nancy Y. ;
Mullen, Matthew B. ;
Weaver, Marilee G. ;
Regalla, Lisa A. ;
Kendall, Elizabeth A. ;
Lyons, Thomas J. .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2007, 1773 (07) :1124-1132
[30]   Agonist-modulated regulation of AMP-activated protein kinase (AMPK) in endothelial cells -: Evidence for an AMPK→Rac1→Akt→Endothelial nitric-oxide synthase pathway [J].
Levine, Yehoshua C. ;
Li, Gordon K. ;
Michel, Thomas .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (28) :20351-20364