Tailoring the optical property by a three-dimensional epitaxial heterostructure:: A case of ZnO/SnO2

被引:198
作者
Kuang, Q
Jiang, ZY
Xie, ZX [1 ]
Lin, SC
Lin, ZW
Xie, SY
Huang, RB
Zheng, LS
机构
[1] Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Dept Chem, Xiamen 361005, Peoples R China
关键词
D O I
10.1021/ja052259t
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Epitaxial growth, as a best strategy to attain a heterostructure with a well-defined and clean interface, usually takes place on a planar substrate. In this paper, using a ZnO/SnO2 core-shell heterostructure as an example, we demonstrate the possibility of establishing a three-dimensional epitaxial interface between two materials with different crystal systems for the first time and show possible tailoring optical properties by building the heteroepitaxial crystal interface. The characterization results of element mapping, high-resolution transmission electron microscopy, and selected area electric diffraction reveal that the as-prepared ZnO/SnO2 heterostructure has a tetrapod-like ZnO core and a SnO2 shell with 15-30 nm, and their special epitaxial relation is (010)(SnO2)||(0110)(ZnO) and [100](SnO2)||[0001](ZnO). Such three-dimensional epitaxy between the ZnO core and SnO2 shell is quite different from the usual planar epitaxy or three-dimensional epitaxy between materials having the same crystal structure. A rational model of such complicated epitaxy has been proposed through investigating the certain structural comparability between the wurtzite ZnO and rutile SnO2 crystals. The as-prepared T-ZnO/SnO2 epitaxial heterostructure exhibits unique luminescence properties in contrast with individual tetrapod ZnO and SnO2 nanostructures, in which the epitaxial interface induces new luminescence properties. This result may inspire great interest in exploring other complicated epitaxy systems and their potential applications in laser, gas sensor, solar energy conversion, photo catalysis, and nanodevices in the future.
引用
收藏
页码:11777 / 11784
页数:8
相关论文
共 52 条
[1]   Heteroepitaxal fabrication and structural characterizations of ultrafine GaN/ZnO coaxial nanorod heterostructures [J].
An, SJ ;
Park, WI ;
Yi, GC ;
Kim, YJ ;
Kang, HB ;
Kim, M .
APPLIED PHYSICS LETTERS, 2004, 84 (18) :3612-3614
[2]   Heterostructures of ZnO nanorods with various one-dimensional nanostructures [J].
Bae, SY ;
Seo, HW ;
Choi, HC ;
Park, J ;
Park, J .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (33) :12318-12326
[3]   Composite Tin and Zinc oxide nanocrystalline particles for enhanced charge separation in sensitized degradation of dyes [J].
Bandara, J ;
Tennakone, K ;
Jayatilaka, PPB .
CHEMOSPHERE, 2002, 49 (04) :439-445
[4]   Novel tin oxide-based anodes for Li-ion batteries [J].
Belliard, F ;
Connor, PA ;
Irvine, JTS .
SOLID STATE IONICS, 2000, 135 (1-4) :163-167
[5]   Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization [J].
Chen, YF ;
Bagnall, DM ;
Koh, HJ ;
Park, KT ;
Hiraga, K ;
Zhu, ZQ ;
Yao, T .
JOURNAL OF APPLIED PHYSICS, 1998, 84 (07) :3912-3918
[6]   A study of the catalytic and vapour-sensing properties of zinc oxide and tin dioxide in relation to 1-butanol and dimethyldisulphide [J].
Costello, BPJD ;
Ewen, RJ ;
Jones, PRH ;
Ratcliffe, NM ;
Wat, RKM .
SENSORS AND ACTUATORS B-CHEMICAL, 1999, 61 (1-3) :199-207
[7]   Synthesis and optical properties of tetrapod-like zinc oxide nanorods [J].
Dai, Y ;
Zhang, Y ;
Li, QK ;
Nan, CW .
CHEMICAL PHYSICS LETTERS, 2002, 358 (1-2) :83-86
[8]   Growth of high-quality epitaxial ZnO films on α-Al2O3 [J].
Fons, P ;
Iwata, K ;
Niki, S ;
Yamada, A ;
Matsubara, K .
JOURNAL OF CRYSTAL GROWTH, 1999, 201 :627-632
[9]   Uniaxial locked epitaxy of ZnO on the a face of sapphire [J].
Fons, P ;
Iwata, K ;
Yamada, A ;
Matsubara, K ;
Niki, S ;
Nakahara, K ;
Tanabe, T ;
Takasu, H .
APPLIED PHYSICS LETTERS, 2000, 77 (12) :1801-1803
[10]   Ga2O3 nanoribbons-Eu2O3 multisheaths heterostructure and energy transfer [J].
Fu, L ;
Liu, ZM ;
Liu, YQ ;
Han, BX ;
Wang, JQ ;
Hu, PG ;
Cao, LC ;
Zhu, DB .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (35) :13074-13078