Solution-processed bulk heterojunction organic solar cells with high polarity small molecule sensitizer

被引:14
作者
Choi, Jin Woo [1 ]
Kulshreshtha, Chandramouli [1 ]
Kennedy, G. P. [3 ]
Kwon, Jang Hyuk [1 ]
Jung, Sung-Hyun [2 ]
Chae, Miyoung [2 ]
机构
[1] Kyung Hee Univ, Dept Informat Display, Seoul 130701, South Korea
[2] Cheil Ind Inc, Uiwang Si 3322, Gyeonggi Do, South Korea
[3] Korea Univ, Dept Elect Engn, Seoul 136701, South Korea
关键词
Bulk heterojunction; Solar cells; Doping; Energy transfer; Sensitizer; BAND-GAP; EFFICIENCY;
D O I
10.1016/j.solmat.2011.02.018
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A new sensitizer molecule, HMBI (9,18-(di-2-hexyldecyl)-2,11-dimethoxy-9,18-dihydrobenzo[5,6]-s-indaceno[1,2-b]indeno[2,1-h]carbazol-6,15-dione), containing electron-donating carbazole and electron-accepting diketone units, has been synthesized for solution-processed bulk heterojunction organic solar cells. The HMBI material has good solubility in common organic solvents. Its HOMO and LUMO energy levels were found to be at 5.6 and 3.0 eV, respectively. It has absorption bands ranging from 300 to 500 nm. Dispersion of HMBI molecules in the P3HT/PCBM blend broadens the absorption bands over the spectral range of 350-500 nm. Uniform thin film devices doped with varying concentration of HMBI, incorporated within the P3HT/PCBM blend, were fabricated. The 3 wt% of HMBI doping produces an improvement in power-conversion efficiency (PCE) up to 11.5% compared with the reference P3HT/PCBM device. Efficient light harvesting caused by HMBI sensitizer molecules primarily yields increased carrier generation and short-circuit current. In addition, some morphological improvements in the P3HT/PCBM system may contribute to the generation of enhanced photocurrent. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:2069 / 2076
页数:8
相关论文
共 18 条
[11]   Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols [J].
Peet, J. ;
Kim, J. Y. ;
Coates, N. E. ;
Ma, W. L. ;
Moses, D. ;
Heeger, A. J. ;
Bazan, G. C. .
NATURE MATERIALS, 2007, 6 (07) :497-500
[12]   Small molecule sensitizers for near-infrared absorption in polymer bulk heterojunction solar cells [J].
Peet, J. ;
Tamayo, A. B. ;
Dang, X. -D. ;
Seo, J. H. ;
Nguyena, T. -Q. .
APPLIED PHYSICS LETTERS, 2008, 93 (16)
[13]   Short-circuit current density improvement of inverted polymer solar cells using PbPc to enhance photon absorption over 600 nm [J].
Shen, Liang ;
Xu, Yang ;
Zhang, Xindong ;
Meng, Fanxu ;
Ruan, Shengping ;
Chen, Weiyou .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2010, 94 (12) :2451-2454
[14]   High-Efficiency Polymer Tandem Solar Cells with Three-Terminal Structure [J].
Sista, Srinivas ;
Hong, Ziruo ;
Park, Mi-Hyae ;
Xu, Zheng ;
Yang, Yang .
ADVANCED MATERIALS, 2010, 22 (08) :E77-+
[15]   A low band gap, solution processable oligothiophene with a diketopyrrolopyrrole core for use in organic solar cells [J].
Tamayo, Arnold B. ;
Walker, Bright ;
Nguyen, Thuc-Quyen .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (30) :11545-11551
[16]   Highly efficient organic solar cells based on a poly(2,7-carbazole) derivative [J].
Wakim, Salem ;
Beaupre, Serge ;
Blouin, Nicolas ;
Aich, Badrou-Reda ;
Rodman, Sheila ;
Gaudiana, Russell ;
Tao, Ye ;
Leclerc, Mario .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (30) :5351-5358
[17]   Lead sulfide nanocrystal: conducting polymer solar cells [J].
Watt, AAR ;
Blake, D ;
Warner, JH ;
Thomsen, EA ;
Tavenner, EL ;
Rubinsztein-Dunlop, H ;
Meredith, P .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2005, 38 (12) :2006-2012
[18]  
WU IC, 2010, J MATER CHEM, V18, P4297