p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase

被引:630
作者
Jiang, Peng [1 ,2 ,3 ,4 ]
Du, Wenjing [1 ,2 ,3 ,4 ]
Wang, Xingwu [1 ,2 ]
Mancuso, Anthony [3 ,4 ]
Gao, Xiang [5 ]
Wu, Mian [1 ,2 ]
Yang, Xiaolu [3 ,4 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230027, Anhui, Peoples R China
[2] Univ Sci & Technol China, Sch Life Sci, Hefei 230027, Anhui, Peoples R China
[3] Univ Penn, Sch Med, Dept Canc Biol, Philadelphia, PA 19096 USA
[4] Univ Penn, Sch Med, Abramson Family Canc Res Inst, Philadelphia, PA 19096 USA
[5] Nanjing Univ, Model Anim Res Ctr, State Key Lab Pharmaceut Biotechnol, Nanjing 210093, Peoples R China
基金
美国国家卫生研究院;
关键词
NUCLEAR EXPORT; CANCER; DOMAIN; COMPLEX;
D O I
10.1038/ncb2172
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Cancer cells consume large quantities of glucose and primarily use glycolysis for ATP production, even in the presence of adequate oxygen(1,2). This metabolic signature (aerobic glycolysis or the Warburg effect) enables cancer cells to direct glucose to biosynthesis, supporting their rapid growth and proliferation(3,4). However, both causes of the Warburg effect and its connection to biosynthesis are not well understood. Here we show that the tumour suppressor p53, the most frequently mutated gene in human tumours, inhibits the pentose phosphate pathway(5) (PPP). Through the PPP, p53 suppresses glucose consumption, NADPH production and biosynthesis. The p53 protein binds to glucose-6-phosphate dehydrogenase (G6PD), the first and rate-limiting enzyme of the PPP, and prevents the formation of the active dimer. Tumour-associated p53 mutants lack the G6PD-inhibitory activity. Therefore, enhanced PPP glucose flux due to p53 inactivation may increase glucose consumption and direct glucose towards biosynthesis in tumour cells.
引用
收藏
页码:310 / U278
页数:15
相关论文
共 30 条
[1]   A Mutant-p53/Smad Complex Opposes p63 to Empower TGFβ-Induced Metastasis [J].
Adorno, Maddalena ;
Cordenonsi, Michelangelo ;
Montagner, Marco ;
Dupont, Sirio ;
Wong, Christine ;
Hann, Byron ;
Solari, Aldo ;
Bobisse, Sara ;
Rondina, Maria Beatrice ;
Guzzardo, Vincenza ;
Parenti, Anna R. ;
Rosato, Antonio ;
Bicciato, Silvio ;
Balmain, Allan ;
Piccolo, Stefano .
CELL, 2009, 137 (01) :87-98
[2]  
[Anonymous], 1924, Biochem Z
[3]   Human glucose-6-phosphate dehydrogenase:: the crystal structure reveals a structural NADP+ molecule and provides insights into enzyme deficiency [J].
Au, SWN ;
Gover, S ;
Lam, VMS ;
Adams, MJ .
STRUCTURE, 2000, 8 (03) :293-303
[4]   TIGAR, a p53-inducible regulator of glycolysis and apoptosis [J].
Bensaad, Karim ;
Tsuruta, Atsushi ;
Selak, Mary A. ;
Calvo Vidal, M. Nieves ;
Nakano, Katsunori ;
Bartrons, Ramon ;
Gottlieb, Eyal ;
Vousden, Karen H. .
CELL, 2006, 126 (01) :107-120
[5]  
Berg J.M., 2006, Biochemistry, V6th, P577
[6]   A system for stable expression of short interfering RNAs in mammalian cells [J].
Brummelkamp, TR ;
Bernards, R ;
Agami, R .
SCIENCE, 2002, 296 (5567) :550-553
[7]   Requirement for p53 and p21 to sustain G2 arrest after DNA damage [J].
Bunz, F ;
Dutriaux, A ;
Lengauer, C ;
Waldman, T ;
Zhou, S ;
Brown, JP ;
Sedivy, JM ;
Kinzler, KW ;
Vogelstein, B .
SCIENCE, 1998, 282 (5393) :1497-1501
[8]   The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation [J].
DeBerardinis, Ralph J. ;
Lum, Julian J. ;
Hatzivassiliou, Georgia ;
Thompson, Craig B. .
CELL METABOLISM, 2008, 7 (01) :11-20
[9]   Suppression of p53 activity by Siva1 [J].
Du, W. ;
Jiang, P. ;
Li, N. ;
Mei, Y. ;
Wang, X. ;
Wen, L. ;
Yang, X. ;
Wu, M. .
CELL DEATH AND DIFFERENTIATION, 2009, 16 (11) :1493-1504
[10]   Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6 [J].
Freedman, DA ;
Levine, AJ .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (12) :7288-7293