p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase

被引:630
作者
Jiang, Peng [1 ,2 ,3 ,4 ]
Du, Wenjing [1 ,2 ,3 ,4 ]
Wang, Xingwu [1 ,2 ]
Mancuso, Anthony [3 ,4 ]
Gao, Xiang [5 ]
Wu, Mian [1 ,2 ]
Yang, Xiaolu [3 ,4 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230027, Anhui, Peoples R China
[2] Univ Sci & Technol China, Sch Life Sci, Hefei 230027, Anhui, Peoples R China
[3] Univ Penn, Sch Med, Dept Canc Biol, Philadelphia, PA 19096 USA
[4] Univ Penn, Sch Med, Abramson Family Canc Res Inst, Philadelphia, PA 19096 USA
[5] Nanjing Univ, Model Anim Res Ctr, State Key Lab Pharmaceut Biotechnol, Nanjing 210093, Peoples R China
基金
美国国家卫生研究院;
关键词
NUCLEAR EXPORT; CANCER; DOMAIN; COMPLEX;
D O I
10.1038/ncb2172
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Cancer cells consume large quantities of glucose and primarily use glycolysis for ATP production, even in the presence of adequate oxygen(1,2). This metabolic signature (aerobic glycolysis or the Warburg effect) enables cancer cells to direct glucose to biosynthesis, supporting their rapid growth and proliferation(3,4). However, both causes of the Warburg effect and its connection to biosynthesis are not well understood. Here we show that the tumour suppressor p53, the most frequently mutated gene in human tumours, inhibits the pentose phosphate pathway(5) (PPP). Through the PPP, p53 suppresses glucose consumption, NADPH production and biosynthesis. The p53 protein binds to glucose-6-phosphate dehydrogenase (G6PD), the first and rate-limiting enzyme of the PPP, and prevents the formation of the active dimer. Tumour-associated p53 mutants lack the G6PD-inhibitory activity. Therefore, enhanced PPP glucose flux due to p53 inactivation may increase glucose consumption and direct glucose towards biosynthesis in tumour cells.
引用
收藏
页码:310 / U278
页数:15
相关论文
共 30 条
[11]   Cytoplasmic functions of the tumour suppressor p53 [J].
Green, Douglas R. ;
Kroemer, Guido .
NATURE, 2009, 458 (7242) :1127-1130
[12]   Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation [J].
Heiden, Matthew G. Vander ;
Cantley, Lewis C. ;
Thompson, Craig B. .
SCIENCE, 2009, 324 (5930) :1029-1033
[13]   Novel human p53 mutations that are toxic to yeast can enhance transactivation of specific promoters and reactivate tumor p53 mutants [J].
Inga, A ;
Resnick, MA .
ONCOGENE, 2001, 20 (26) :3409-3419
[14]   A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy [J].
Komarov, PG ;
Komarova, EA ;
Kondratov, RV ;
Christov-Tselkov, K ;
Coon, JS ;
Chernov, MV ;
Gudkov, AV .
SCIENCE, 1999, 285 (5434) :1733-1737
[15]  
Kondoh H, 2005, CANCER RES, V65, P177
[16]   EXAMINATION OF PRIMARY METABOLIC PATHWAYS IN A MURINE HYBRIDOMA WITH C-13 NUCLEAR-MAGNETIC-RESONANCE SPECTROSCOPY [J].
MANCUSO, A ;
SHARFSTEIN, ST ;
TUCKER, SN ;
CLARK, DS ;
BLANCH, HW .
BIOTECHNOLOGY AND BIOENGINEERING, 1994, 44 (05) :563-585
[17]   p53 regulates mitochondrial respiration [J].
Matoba, Satoaki ;
Kang, Ju-Gyeong ;
Patino, Willmar D. ;
Wragg, Andrew ;
Boehm, Manfred ;
Gavrilova, Oksana ;
Hurley, Paula J. ;
Bunz, Fred ;
Hwang, Paul M. .
SCIENCE, 2006, 312 (5780) :1650-1653
[18]   Semirational design of active tumor suppressor p53 DNA binding domain with enhanced stability [J].
Nikolova, PV ;
Henckel, J ;
Lane, DP ;
Fersht, AR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) :14675-14680
[19]  
Roos D, 1999, BLOOD, V94, P2955
[20]   A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking [J].
Stommel, JM ;
Marchenko, ND ;
Jimenez, GS ;
Moll, UM ;
Hope, TJ ;
Wahl, GM .
EMBO JOURNAL, 1999, 18 (06) :1660-1672