Counting BPS operators in gauge theories: quivers, syzygies and plethystics

被引:260
作者
Benvenuti, Sergio [1 ,2 ]
Feng, Bo [3 ,4 ,7 ]
Hanany, Amihay [1 ]
He, Yang-Hui [5 ,6 ]
机构
[1] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
[2] Princeton Univ, Joseph Henry Labs, Princeton, NJ 08544 USA
[3] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England
[4] Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Peoples R China
[5] Univ Oxford Merton Coll, Oxford OX1 4JD, England
[6] Univ Oxford, Inst Math, Oxford OX1 3LB, England
[7] Univ London Imperial Coll Sci Technol & Med, Inst Math, London SW7 2AZ, England
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2007年 / 11期
关键词
discrete and finite symmetries; AdS-CFT correspondence; brane dynamics in gauge theories; differential and algebraic geometry;
D O I
10.1088/1126-6708/2007/11/050
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We develop a systematic and efficient method of counting single-trace and multi-trace BPS operators with two supercharges, for world-volume gauge theories of N D-brane probes for both N ->infinity and finite N. The techniques are applicable to generic singularities, orbifold, toric, non-toric, complete intersections, et cetera, even to geometries whose precise field theory duals are not yet known. The so-called '' plethystic exponential '' provides a simple bridge between (1) the defining equation of the Calabi-Yau, (2) the generating function of single-trace BPS operators and (3) the generating function of multitrace operators. Mathematically, fascinating and intricate inter-relations between gauge theory, algebraic geometry, combinatorics and number theory exhibit themselves in the form of plethystics and syzygies.
引用
收藏
页数:48
相关论文
共 92 条
[71]   The large-N limit of superconformal field theories and supergravity [J].
Maldacena, J .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1999, 38 (04) :1113-1133
[72]   Counting 1/8-BPS dual-giants [J].
Mandal, Gautam ;
Suryanarayana, Nemani V. .
JOURNAL OF HIGH ENERGY PHYSICS, 2007, (03)
[73]   Toric geometry, Sasaki-Einstein manifolds and a new infinite class of AdS/CFT duals [J].
Martelli, D ;
Sparks, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 262 (01) :51-89
[74]  
MARTELLI D, HEPTH0603021
[75]   The geometric dual of a-maximisation for toric Sasaki-Einstein manifolds [J].
Martelli, Dario ;
Sparks, James ;
Yau, Shing-Tung .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 268 (01) :39-65
[76]  
MCKAY J, 1980, P SYMP PURE MATH, V37, P183
[77]  
Meinardus G., 1954, MATH Z, V59, P388, DOI 10.1007/BF01180268
[78]  
Mikhailov A, 2000, J HIGH ENERGY PHYS
[79]  
Morrison D.R., 1999, ADV THEOR MATH PHYS, V3, P1, DOI [10.4310/ATMP.1999.v3.n1.a1, DOI 10.4310/ATMP.1999.V3.N1.A1]
[80]   Index for orbifold quiver gauge theories [J].
Nakayama, Y .
PHYSICS LETTERS B, 2006, 636 (02) :132-136