Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis, via glycolysis and ketone production

被引:193
作者
Capparelli, Claudia [1 ,2 ,3 ,4 ]
Guido, Carmela [1 ,2 ,3 ,4 ]
Whitaker-Menezes, Diana [1 ,2 ,3 ]
Bonuccelli, Gloria [1 ,2 ,3 ]
Balliet, Renee [1 ,2 ,3 ]
Pestell, Timothy G. [1 ,2 ,3 ]
Goldberg, Allison F. [1 ,5 ]
Pestell, Richard G. [1 ,2 ,3 ,6 ]
Howell, Anthony [7 ,8 ]
Sneddon, Sharon [7 ,8 ]
Birbe, Ruth [9 ]
Tsirigos, Aristotelis [10 ]
Martinez-Outschoorn, Ubaldo [1 ,2 ,3 ,6 ]
Sotgia, Federica [1 ,2 ,3 ,7 ,8 ]
Lisanti, Michael P. [1 ,2 ,3 ,6 ,7 ,8 ]
机构
[1] Thomas Jefferson Univ, Kimmel Canc Ctr, Jefferson Stem Cell Biol & Regenerat Med Ctr, Philadelphia, PA 19107 USA
[2] Thomas Jefferson Univ, Kimmel Canc Ctr, Dept Stem Cell Biol & Regenerat Med, Philadelphia, PA 19107 USA
[3] Thomas Jefferson Univ, Kimmel Canc Ctr, Dept Canc Biol, Philadelphia, PA 19107 USA
[4] Univ Calabria, Dept Cellular Biol, I-87036 Cosenza, Italy
[5] Thomas Jefferson Univ, Dept Surg, Philadelphia, PA 19107 USA
[6] Thomas Jefferson Univ, Kimmel Canc Ctr, Dept Med Oncol, Philadelphia, PA 19107 USA
[7] Univ Manchester, Manchester Acad Hlth Sci Ctr, Manchester Breast Ctr, Paterson Inst Canc Res,Sch Canc, Manchester M13 9PL, Lancs, England
[8] Univ Manchester, Manchester Acad Hlth Sci Ctr, Paterson Inst Canc Res,Sch Canc, Breakthrough Breast Canc Res Unit, Manchester M13 9PL, Lancs, England
[9] Thomas Jefferson Univ, Dept Pathol Anat & Cell Biol, Philadelphia, PA 19107 USA
[10] IBM Thomas J Watson Res Ctr, Computat Genom Grp, Yorktown Hts, NY USA
基金
欧洲研究理事会;
关键词
tumor stroma; cancer-associated fibroblasts; glycolysis; autophagy; senescence; cancer metabolism; BNIP3; BNIP3L; beclin1; ATG16L1; cathepsin B; STROMAL CAVEOLIN-1 EXPRESSION; BREAST-CANCER; HYDROGEN-PEROXIDE; OXIDATIVE STRESS; CELLULAR SENESCENCE; BETA-GALACTOSIDASE; MITOCHONDRIAL METABOLISM; PREMATURE SENESCENCE; ENDOTHELIAL-CELLS; MICROENVIRONMENT;
D O I
10.4161/cc.20718
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Senescent fibroblasts are known to promote tumor growth. However, the exact mechanism remains largely unknown. An important clue comes from recent studies linking autophagy with the onset of senescence. Thus, autophagy and senescence may be part of the same physiological process, known as the autophagy-senescence transition (AST). To test this hypothesis, human fibroblasts immortalized with telomerase (hTERT-BJ1) were stably transfected with autophagy genes (BNIP3, CTSB or ATG16L1). Their overexpression was sufficient to induce a constitutive autophagic phenotype, with features of mitophagy, mitochondrial dysfunction and a shift toward aerobic glycolysis, resulting in L-lactate and ketone body production. Autophagic fibroblasts also showed features of senescence, with increased p21(WAF1/CIP1), a CDK inhibitor, cellular hypertrophy and increased beta-galactosidase activity. Thus, we genetically validated the existence of the autophagy-senescence transition. Importantly, autophagic-senescent fibroblasts promoted tumor growth and metastasis, when co-injected with human breast cancer cells, independently of angiogenesis. Autophagic-senescent fibroblasts stimulated mitochondrial metabolism in adjacent cancer cells, when the two cell types were co-cultured, as visualized by MitoTracker staining. In particular, autophagic ATG16L1 fibroblasts, which produced large amounts of ketone bodies (3-hydroxy-butyrate), had the strongest effects and promoted metastasis by up to 11-fold. Conversely, expression of ATG16L1 in epithelial cancer cells inhibited tumor growth, indicating that the effects of autophagy are compartment-specific. Thus, autophagic-senescent fibroblasts metabolically promote tumor growth and metastasis, by paracrine production of high-energy mitochondrial fuels. Our current studies provide genetic support for the importance of "two-compartment tumor metabolism" in driving tumor growth and metastasis via a simple energy transfer mechanism. Finally, beta-galactosidase, a known lysosomal enzyme and biomarker of senescence, was localized to the tumor stroma in human breast cancer tissues, providing in vivo support for our hypothesis. Bioinformatic analysis of genome-wide transcriptional profiles from tumor stroma, isolated from human breast cancers, also validated the onset of an autophagy-senescence transition. Taken together, these studies establish a new functional link between host aging, autophagy, the tumor microenvironment and cancer metabolism.
引用
收藏
页码:2285 / 2302
页数:18
相关论文
共 84 条
[41]   Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation Implications for breast cancer and DCIS therapy with autophagy inhibitors [J].
Martinez-Outschoorn, Ubaldo E. ;
Pavlides, Stephanos ;
Whitaker-Menezes, Diana ;
Daumer, Kristin M. ;
Milliman, Janet N. ;
Chiavarina, Barbara ;
Migneco, Gemma ;
Witkiewicz, Agnieszka K. ;
Martinez-Cantarin, Maria P. ;
Flomenberg, Neal ;
Howell, Anthony ;
Pestell, Richard G. ;
Lisanti, Michael P. ;
Sotgia, Federica .
CELL CYCLE, 2010, 9 (12) :2423-2433
[42]   Atypical BH3-domains of BNIP3 and BNIP3L lead to autophagy in hypoxia [J].
Mazure, Nathalie M. ;
Pouyssegur, Jacques .
AUTOPHAGY, 2009, 5 (06) :868-869
[43]   The biochemistry of ketogenesis and its role in weight management, neurological disease and oxidative stress [J].
McPherson, Peter Andrew C. ;
McEneny, Jane .
JOURNAL OF PHYSIOLOGY AND BIOCHEMISTRY, 2012, 68 (01) :141-151
[44]   Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate [J].
Mizushima, N ;
Kuma, A ;
Kobayashi, Y ;
Yamamoto, A ;
Matsubae, M ;
Takao, T ;
Natsume, T ;
Ohsumi, Y ;
Yoshimori, T .
JOURNAL OF CELL SCIENCE, 2003, 116 (09) :1679-1688
[45]   Spatial Coupling of mTOR and Autophagy Augments Secretory Phenotypes [J].
Narita, Masako ;
Young, Andrew R. J. ;
Arakawa, Satoko ;
Samarajiwa, Shamith A. ;
Nakashima, Takayuki ;
Yoshida, Sei ;
Hong, Sungki ;
Berry, Lorraine S. ;
Reichelt, Stefanie ;
Ferreira, Manuela ;
Tavare, Simon ;
Inoki, Ken ;
Shimizu, Shigeomi ;
Narita, Masashi .
SCIENCE, 2011, 332 (6032) :966-970
[46]   Autophagy facilitates oncogene-induced senescence [J].
Narita, Masako ;
Young, Andrew R. J. ;
Narita, Masashi .
AUTOPHAGY, 2009, 5 (07) :1046-1047
[47]   Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth [J].
Nieman, Kristin M. ;
Kenny, Hilary A. ;
Penicka, Carla V. ;
Ladanyi, Andras ;
Buell-Gutbrod, Rebecca ;
Zillhardt, Marion R. ;
Romero, Iris L. ;
Carey, Mark S. ;
Mills, Gordon B. ;
Hotamisligil, Goekhan S. ;
Yamada, S. Diane ;
Peter, Marcus E. ;
Gwin, Katja ;
Lengyel, Ernst .
NATURE MEDICINE, 2011, 17 (11) :1498-U207
[48]   Overexpression and altered subcellular localization of autophagy-related 16-like 1 in human oral squamous-cell carcinoma: correlation with lymphovascular invasion and lymph-node metastasis [J].
Nomura, Hitomi ;
Uzawa, Katsuhiro ;
Yamano, Yukio ;
Fushimi, Kazuaki ;
Ishigami, Takashi ;
Kouzu, Yukinao ;
Koike, Hirofumi ;
Siiba, Masashi ;
Bukawa, Hiroki ;
Yokoe, Hidetaka ;
Kubosawa, Hitoshi ;
Tanzawa, Hideki .
HUMAN PATHOLOGY, 2009, 40 (01) :83-91
[49]   Warburg Meets Autophagy: Cancer-Associated Fibroblasts Accelerate Tumor Growth and Metastasis via Oxidative Stress, Mitophagy, and Aerobic Glycolysis [J].
Pavlides, Stephanos ;
Vera, Iset ;
Gandara, Ricardo ;
Sneddon, Sharon ;
Pestell, Richard G. ;
Mercier, Isabelle ;
Martinez-Outschoorn, Ubaldo E. ;
Whitaker-Menezes, Diana ;
Howell, Anthony ;
Sotgia, Federica ;
Lisanti, Michael P. .
ANTIOXIDANTS & REDOX SIGNALING, 2012, 16 (11) :1264-1284
[50]   The autophagic tumor stroma model of cancer Role of oxidative stress and ketone production in fueling tumor cell metabolism [J].
Pavlides, Stephanos ;
Tsirigos, Aristotelis ;
Migneco, Gemma ;
Whitaker-Menezes, Diana ;
Chiavarina, Barbara ;
Flomenberg, Neal ;
Frank, Philippe G. ;
Casimiro, Mathew C. ;
Wang, Chenguang ;
Pestell, Richard G. ;
Martinez-Outschoorn, Ubaldo E. ;
Howell, Anthony ;
Sotgia, Federica ;
Lisanti, Michael P. .
CELL CYCLE, 2010, 9 (17) :3485-3505