Field-effect electroluminescence in silicon nanocrystals

被引:502
作者
Walters, RJ [1 ]
Bourianoff, GI [1 ]
Atwater, HA [1 ]
机构
[1] CALTECH, Thomas J Watson Lab Appl Phys, Pasadena, CA 91125 USA
关键词
D O I
10.1038/nmat1307
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
T here is currently worldwide interest in developing silicon-based active optical components in order to leverage the infrastructure of silicon microelectronics technology for the fabrication of optoelectronic devices. Light emission in bulk silicon-based devices is constrained in wavelength to infrared emission, and in efficiency by the indirect bandgap of silicon(1,2). One promising strategy for overcoming these challenges is to make use of quantum-confined excitonic emission in silicon nanocrystals. A critical challenge for silicon nanocrystal devices based on nanocrystals embedded in silicon dioxide has been the development of a method for efficient electrical carrier injection(3-8). We report here a scheme for electrically pumping dense silicon nanocrystal arrays by a field-effect electroluminescence mechanism. In this excitation process, electrons and holes are both injected from the same semiconductor channel across a tunnelling barrier in a sequential programming process, in contrast to simultaneous carrier injection in conventional pn-junction light-emitting-diode structures. Light emission is strongly correlated with the injection of a second carrier into a nanocrystal that has been previously programmed with a charge of the opposite sign.
引用
收藏
页码:143 / 146
页数:4
相关论文
共 14 条
[1]   Optical properties of silicon nanocrystal LEDs [J].
De la Torre, J ;
Souifi, A ;
Poncet, A ;
Busseret, C ;
Lemiti, M ;
Bremond, G ;
Guillot, G ;
Gonzalez, O ;
Garrido, B ;
Morante, JR ;
Bonafos, C .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2003, 16 (3-4) :326-330
[2]   Optical and electrical transport mechanisms in Si-nanocrystal-based LEDs [J].
De la Torre, J ;
Souifi, A ;
Lemiti, M ;
Poncet, A ;
Busseret, C ;
Guillot, G ;
Bremond, G ;
Gonzalez, O ;
Garrido, B ;
Morante, JR .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2003, 17 (1-4) :604-606
[3]  
FENG T, IN PRESS APPL PHYS L
[4]   Electroluminescence of silicon nanocrystals in MOS structures [J].
Franzò, G ;
Irrera, A ;
Moreira, EC ;
Miritello, M ;
Iacona, F ;
Sanfilippo, D ;
Di Stefano, G ;
Fallica, PG ;
Priolo, F .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2002, 74 (01) :1-5
[5]   Visible light-emitting devices with Schottky contacts on an ultrathin amorphous silicon layer containing silicon nanocrystals [J].
Fujita, S ;
Sugiyama, N .
APPLIED PHYSICS LETTERS, 1999, 74 (02) :308-310
[6]   Efficient silicon light-emitting diodes [J].
Green, MA ;
Zhao, JH ;
Wang, AH ;
Reece, PJ ;
Gal, M .
NATURE, 2001, 412 (6849) :805-808
[7]   Fast and long retention-time nano-crystal memory [J].
Hanafi, HI ;
Tiwari, S ;
Khan, I .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1996, 43 (09) :1553-1558
[8]   Analysis of the stretched exponential photoluminescence decay from nanometer-sized silicon crystals in SiO2 [J].
Linnros, J ;
Lalic, N ;
Galeckas, A ;
Grivickas, V .
JOURNAL OF APPLIED PHYSICS, 1999, 86 (11) :6128-6134
[9]  
Lockwood DJ, 2004, TOP APPL PHYS, V94, P1
[10]   Nanocrystal formation in Si implanted thin SiO2 layers under the influence of an absorbing interface [J].
Müller, T ;
Heinig, KH ;
Möller, W .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2003, 101 (1-3) :49-54