Spontaneous-emission control by photonic crystals and nanocavities

被引:851
作者
Noda, Susumu [1 ]
Fujita, Masayuki [1 ]
Asano, Takashi [1 ]
机构
[1] Kyoto Univ, Dept Elect Sci & Engn, Nishikyo Ku, Kyoto 6158510, Japan
基金
日本科学技术振兴机构;
关键词
D O I
10.1038/nphoton.2007.141
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We describe the recent experimental progress in the control of spontaneous emission by manipulating optical modes with photonic crystals. It has been clearly demonstrated that the spontaneous emission from light emitters embedded in photonic crystals can be suppressed by the so-called photonic bandgap, whereas the emission efficiency in the direction where optical modes exist can be enhanced. Also, when an artificial defect is introduced into the photonic crystal, a photonic nanocavity is produced that can interact with light emitters. Cavity quality factors, or Q factors, of up to 2 million have been realized while maintaining very small mode volumes, and both spontaneous-emission modification ( the Purcell effect) and strong-coupling phenomena have been demonstrated. The use of photonic crystals and nanocavities to manipulate spontaneous emission will contribute to the evolution of a variety of applications, including illumination, display, optical communication, solar energy and even quantum-information systems.
引用
收藏
页码:449 / 458
页数:10
相关论文
共 81 条
[11]   Deterministic coupling of single quantum dots to single nanocavity modes [J].
Badolato, A ;
Hennessy, K ;
Atatüre, M ;
Dreiser, J ;
Hu, E ;
Petroff, PM ;
Imamoglu, A .
SCIENCE, 2005, 308 (5725) :1158-1161
[12]   Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots -: art. no. 041308 [J].
Bayer, M ;
Forchel, A .
PHYSICAL REVIEW B, 2002, 65 (04) :1-4
[13]   Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres [J].
Blanco, A ;
Chomski, E ;
Grabtchak, S ;
Ibisate, M ;
John, S ;
Leonard, SW ;
Lopez, C ;
Meseguer, F ;
Miguez, H ;
Mondia, JP ;
Ozin, GA ;
Toader, O ;
van Driel, HM .
NATURE, 2000, 405 (6785) :437-440
[14]   Fabrication of photonic crystals for the visible spectrum by holographic lithography [J].
Campbell, M ;
Sharp, DN ;
Harrison, MT ;
Denning, RG ;
Turberfield, AJ .
NATURE, 2000, 404 (6773) :53-56
[15]   Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities [J].
Chang, WH ;
Chen, WY ;
Chang, HS ;
Hsieh, TP ;
Chyi, JI ;
Hsu, TM .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[16]   Fabrication of photonic band-gap crystals [J].
Cheng, CC ;
Scherer, A .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1995, 13 (06) :2696-2700
[17]   Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal [J].
Englund, D ;
Fattal, D ;
Waks, E ;
Solomon, G ;
Zhang, B ;
Nakaoka, T ;
Arakawa, Y ;
Yamamoto, Y ;
Vuckovic, J .
PHYSICAL REVIEW LETTERS, 2005, 95 (01)
[18]   High extraction efficiency of spontaneous emission from slabs of photonic crystals [J].
Fan, SH ;
Villeneuve, PR ;
Joannopoulos, JD ;
Schubert, EF .
PHYSICAL REVIEW LETTERS, 1997, 78 (17) :3294-3297
[19]   Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals [J].
Fujita, M ;
Takahashi, S ;
Tanaka, Y ;
Asano, T ;
Noda, S .
SCIENCE, 2005, 308 (5726) :1296-1298
[20]  
FUJITA M, 2006, C LAS EL OPT QUANT E