Functionalised amyloid fibrils for roles in cell adhesion

被引:148
作者
Gras, Sally L. [1 ,2 ]
Tickler, Anna K. [2 ]
Squires, Adam M.
Devlin, Glyn L. [3 ]
Horton, Michael A. [4 ,5 ]
Dobson, Christopher M. [3 ]
MacPhee, Cait E. [6 ]
机构
[1] Univ Melbourne, Dept Chem & Biomol Engn, Bio21 Mol Sci & Biotechnol Inst, Parkville, Vic 3010, Australia
[2] Univ Cambridge, Cavevdish Lab, Cambridge, England
[3] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England
[4] UCL, Dept Med, London WC1H 0AH, England
[5] UCL, London Ctr Nanotechnol, London WC1H 0AH, England
[6] Univ Edinburgh, Sch Phys, Edinburgh EH9 3JZ, Midlothian, Scotland
基金
英国惠康基金; 英国医学研究理事会;
关键词
self-assembly; nanotopography; XRD (X-ray diffraction); fibrils; bioactivity; RGD peptide;
D O I
10.1016/j.biomaterials.2007.11.028
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We describe experiments designed to explore the possibility of using amyloid fibrils as new nanoscale biomaterials for promoting and exploiting cell adhesion, migration and differentiation in vitro. We created peptides that add the biological cell adhesion sequence (RGD) or a control sequence (RAD) to the C-terminus of an 11-residue peptide corresponding to residues 105-115 of the amyloidogenic protein transthyretin. These peptides readily self-assemble in aqueous solution to form amyloid fibrils, and X-ray fibre diffraction shows that they possess the same strand and sheet spacing in the characteristic cross-beta structure as do fibrils formed by the parent peptide. We report that the fibrils containing the RGD sequence are bioactive and that these fibrils interact specifically with cells via the RGD group displayed on the fibril surface. As the design of such functionalized fibrils can be systematically altered, these findings suggest that it will be possible to generate nanomaterials based on amyloid fibrils that are tailored to promote interactions with a wide variety of cell types. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1553 / 1562
页数:10
相关论文
共 51 条
[11]   De novo designed peptide-based amyloid fibrils [J].
de la Paz, ML ;
Goldie, K ;
Zurdo, J ;
Lacroix, E ;
Dobson, CM ;
Hoenger, A ;
Serrano, L .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (25) :16052-16057
[12]   Mass spectrometric detection of protein, lipid and heme components of cytochrome c oxidase from R-sphaeroides and the stabilization of non-covalent complexes from the enzyme [J].
Distler, AM ;
Allison, J ;
Hiser, C ;
Qin, L ;
Hilmi, Y ;
Ferguson-Miller, S .
EUROPEAN JOURNAL OF MASS SPECTROMETRY, 2004, 10 (02) :295-308
[13]   Protein misfolding, evolution and disease [J].
Dobson, CM .
TRENDS IN BIOCHEMICAL SCIENCES, 1999, 24 (09) :329-332
[14]   Amyloid fibrils from muscle myoglobin -: Even an ordinary globular protein can assume a rogue guise if conditions are right. [J].
Fändrich, M ;
Fletcher, MA ;
Dobson, CM .
NATURE, 2001, 410 (6825) :165-166
[15]   Functional amyloid formation within mammalian tissue [J].
Fowler, DM ;
Koulov, AV ;
Alory-Jost, C ;
Marks, MS ;
Balch, WE ;
Kelly, JW .
PLOS BIOLOGY, 2006, 4 (01) :100-107
[16]   The effect of functionalized self-assembling peptide scaffolds on human aortic endothelial cell function [J].
Genové, E ;
Shen, C ;
Zhang, SG ;
Semino, CE .
BIOMATERIALS, 2005, 26 (16) :3341-3351
[17]   Amyloid fibril formation by an SH3 domain [J].
Guijarro, JI ;
Sunde, M ;
Jones, JA ;
Campbell, ID ;
Dobson, CM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (08) :4224-4228
[18]   NORMAL TRANSTHYRETIN AND SYNTHETIC TRANSTHYRETIN FRAGMENTS FORM AMYLOID-LIKE FIBRILS INVITRO [J].
GUSTAVSSON, A ;
ENGSTROM, U ;
WESTERMARK, P .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1991, 175 (03) :1159-1164
[19]   Self-assembly and mineralization of peptide-amphiphile nanofibers [J].
Hartgerink, JD ;
Beniash, E ;
Stupp, SI .
SCIENCE, 2001, 294 (5547) :1684-1688
[20]  
HAUTANEN A, 1989, J BIOL CHEM, V264, P1437