Transitions to bubbling of chaotic systems

被引:123
作者
Venkataramani, SC
Hunt, BR
Ott, E
Gauthier, DJ
Bienfang, JC
机构
[1] DUKE UNIV,DEPT PHYS,DURHAM,NC 27708
[2] DUKE UNIV,CTR NONLINEAR & COMPLEX SYST,DURHAM,NC 27708
关键词
D O I
10.1103/PhysRevLett.77.5361
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Certain dynamical systems exhibit a phenomenon called bubbling, whereby small perturbations induce intermittent bursting. In this Letter we show that, as a parameter is varied through a critical value, the transition to bubbling can be ''hard'' (the bursts appear abruptly with large amplitude) or ''soft'' (the maximum burst amplitude increases continuously from zero), and that the presence or absence of symmetry in the unperturbed system has a fundamental effect on these transitions. These results are confirmed by numerical and physical experiments.
引用
收藏
页码:5361 / 5364
页数:4
相关论文
共 21 条
[1]   RIDDLED BASINS [J].
Alexander, J. C. ;
Yorke, James A. ;
You, Zhiping ;
Kan, I. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (04) :795-813
[2]   BUBBLING OF ATTRACTORS AND SYNCHRONIZATION OF CHAOTIC OSCILLATORS [J].
ASHWIN, P ;
BUESCU, J ;
STEWART, I .
PHYSICS LETTERS A, 1994, 193 (02) :126-139
[3]   CIRCUIT IMPLEMENTATION OF SYNCHRONIZED CHAOS WITH APPLICATIONS TO COMMUNICATIONS [J].
CUOMO, KM ;
OPPENHEIM, AV .
PHYSICAL REVIEW LETTERS, 1993, 71 (01) :65-68
[4]   STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS [J].
FUJISAKA, H ;
YAMADA, T .
PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01) :32-47
[5]  
FUJISAKA H, 1986, PROG THEOR PHYS, V75, P1088
[6]   Intermittent loss of synchronization in coupled chaotic oscillators: Toward a new criterion for high-quality synchronization [J].
Gauthier, DJ ;
Bienfang, JC .
PHYSICAL REVIEW LETTERS, 1996, 77 (09) :1751-1754
[7]  
GREBOGI C, 1985, ERGOD THEOR DYN SYST, V5, P341
[8]   FRACTAL BASIN BOUNDARIES, LONG-LIVED CHAOTIC TRANSIENTS, AND UNSTABLE-UNSTABLE PAIR BIFURCATION [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1983, 50 (13) :935-938
[9]   DESYNCHRONIZATION BY PERIODIC-ORBITS [J].
HEAGY, JF ;
CARROLL, TL ;
PECORA, LM .
PHYSICAL REVIEW E, 1995, 52 (02) :R1253-R1256
[10]   Optimal periodic orbits of chaotic systems [J].
Hunt, BR ;
Ott, E .
PHYSICAL REVIEW LETTERS, 1996, 76 (13) :2254-2257