Defining the transcriptome and proteome in three functionally different human cell lines

被引:282
作者
Lundberg, Emma [1 ]
Fagerberg, Linn [2 ]
Klevebring, Daniel [2 ]
Matic, Ivan [3 ]
Geiger, Tamar [3 ]
Cox, Juergen [3 ]
Algenas, Cajsa [2 ]
Lundeberg, Joakim [1 ]
Mann, Matthias [3 ]
Uhlen, Mathias [1 ,2 ]
机构
[1] Royal Inst Technol, Sci Life Lab, S-17165 Stockholm, Sweden
[2] Royal Inst Technol, AlbaNova Univ Ctr, Sch Biotechnol, S-17165 Stockholm, Sweden
[3] Max Planck Inst Biochem, Dept Prote & Signal Transduct, D-82152 Martinsried, Germany
关键词
cell lines; expression; human; proteome; transcriptome; MESSENGER-RNA EXPRESSION; HUMAN GENOME; YEAST; QUANTIFICATION; IDENTIFICATION; FRACTIONATION; EFFICIENCY; SIGNATURES; ABUNDANCE; SEQUENCE;
D O I
10.1038/msb.2010.106
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
An essential question in human biology is how cells and tissues differ in gene and protein expression and how these differences delineate specific biological function. Here, we have performed a global analysis of both mRNA and protein levels based on sequence-based transcriptome analysis (RNA-seq), SILAC-based mass spectrometry analysis and antibody-based confocal microscopy. The study was performed in three functionally different human cell lines and based on the global analysis, we estimated the fractions of mRNA and protein that are cell specific or expressed at similar/different levels in the cell lines. A highly ubiquitous RNA expression was found with > 60% of the gene products detected in all cells. The changes of mRNA and protein levels in the cell lines using SILAC and RNA ratios show high correlations, even though the genome-wide dynamic range is substantially higher for the proteins as compared with the transcripts. Large general differences in abundance for proteins from various functional classes are observed and, in general, the cell-type specific proteins are low abundant and highly enriched for cell-surface proteins. Thus, this study shows a path to characterize the transcriptome and proteome in human cells from different origins. Molecular Systems Biology 6: 450; published online 21 December 2010; doi:10.1038/msb.2010.106
引用
收藏
页数:9
相关论文
共 39 条
[11]   MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification [J].
Cox, Juergen ;
Mann, Matthias .
NATURE BIOTECHNOLOGY, 2008, 26 (12) :1367-1372
[12]   Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast [J].
de Godoy, Lyris M. F. ;
Olsen, Jesper V. ;
Cox, Juergen ;
Nielsen, Michael L. ;
Hubner, Nina C. ;
Froehlich, Florian ;
Walther, Tobias C. ;
Mann, Matthias .
NATURE, 2008, 455 (7217) :1251-U60
[13]   Global analysis of protein expression in yeast [J].
Ghaemmaghami, S ;
Huh, W ;
Bower, K ;
Howson, RW ;
Belle, A ;
Dephoure, N ;
O'Shea, EK ;
Weissman, JS .
NATURE, 2003, 425 (6959) :737-741
[14]   Comparing protein abundance and mRNA expression levels on a genomic scale [J].
Greenbaum, D ;
Colangelo, C ;
Williams, K ;
Gerstein, M .
GENOME BIOLOGY, 2003, 4 (09)
[15]   Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae [J].
Griffin, TJ ;
Gygi, SP ;
Ideker, T ;
Rist, B ;
Eng, J ;
Hood, L ;
Aebersold, R .
MOLECULAR & CELLULAR PROTEOMICS, 2002, 1 (04) :323-333
[16]   Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources [J].
Huang, Da Wei ;
Sherman, Brad T. ;
Lempicki, Richard A. .
NATURE PROTOCOLS, 2009, 4 (01) :44-57
[17]   Ensembl 2009 [J].
Hubbard, T. J. P. ;
Aken, B. L. ;
Ayling, S. ;
Ballester, B. ;
Beal, K. ;
Bragin, E. ;
Brent, S. ;
Chen, Y. ;
Clapham, P. ;
Clarke, L. ;
Coates, G. ;
Fairley, S. ;
Fitzgerald, S. ;
Fernandez-Banet, J. ;
Gordon, L. ;
Graf, S. ;
Haider, S. ;
Hammond, M. ;
Holland, R. ;
Howe, K. ;
Jenkinson, A. ;
Johnson, N. ;
Kahari, A. ;
Keefe, D. ;
Keenan, S. ;
Kinsella, R. ;
Kokocinski, F. ;
Kulesha, E. ;
Lawson, D. ;
Longden, I. ;
Megy, K. ;
Meidl, P. ;
Overduin, B. ;
Parker, A. ;
Pritchard, B. ;
Rios, D. ;
Schuster, M. ;
Slater, G. ;
Smedley, D. ;
Spooner, W. ;
Spudich, G. ;
Trevanion, S. ;
Vilella, A. ;
Vogel, J. ;
White, S. ;
Wilder, S. ;
Zadissa, A. ;
Birney, E. ;
Cunningham, F. ;
Curwen, V. .
NUCLEIC ACIDS RESEARCH, 2009, 37 :D690-D697
[18]   Initial sequencing and analysis of the human genome [J].
Lander, ES ;
Int Human Genome Sequencing Consortium ;
Linton, LM ;
Birren, B ;
Nusbaum, C ;
Zody, MC ;
Baldwin, J ;
Devon, K ;
Dewar, K ;
Doyle, M ;
FitzHugh, W ;
Funke, R ;
Gage, D ;
Harris, K ;
Heaford, A ;
Howland, J ;
Kann, L ;
Lehoczky, J ;
LeVine, R ;
McEwan, P ;
McKernan, K ;
Meldrim, J ;
Mesirov, JP ;
Miranda, C ;
Morris, W ;
Naylor, J ;
Raymond, C ;
Rosetti, M ;
Santos, R ;
Sheridan, A ;
Sougnez, C ;
Stange-Thomann, N ;
Stojanovic, N ;
Subramanian, A ;
Wyman, D ;
Rogers, J ;
Sulston, J ;
Ainscough, R ;
Beck, S ;
Bentley, D ;
Burton, J ;
Clee, C ;
Carter, N ;
Coulson, A ;
Deadman, R ;
Deloukas, P ;
Dunham, A ;
Dunham, I ;
Durbin, R ;
French, L .
NATURE, 2001, 409 (6822) :860-921
[19]   Fast and accurate short read alignment with Burrows-Wheeler transform [J].
Li, Heng ;
Durbin, Richard .
BIOINFORMATICS, 2009, 25 (14) :1754-1760
[20]  
Ligges U., 2003, Journal of Statistical Software, V8, P1, DOI [DOI 10.18637/JSS.V008.I11, 10.18637/jss.v008.i11]