A knowledge-based forcefield for protein-protein interface design

被引:12
作者
Clark, Louis A. [1 ]
van Vlijmen, Herman W. T. [1 ]
机构
[1] Biogen Idec Inc, Protein Engn Grp, Cambridge, MA 02142 USA
关键词
forcefield; protein-protein docking; protein design; antibody; binding energy;
D O I
10.1002/prot.21694
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A distance-dependent knowledge-based potential for prote-in-protein interactions is derived and tested for application in protein design. Information on residue type specific C. and C-beta pair distances is extracted from complex crystal structures in the Protein Data Bank and used in the form of radial distribution functions. The use of only backbone and C-beta position information allows generation of relative protein-protein orientation poses with minimal sidechain information. Further coarse-graining can be done simply in the same theoretical framework to give potentials for residues of known type interacting with unknown type, as in a one-sided interface design problem. Both interface design via pose generation followed by sidechain repacking and localized protein-protein docking tests are performed on 39 non-redundant antibody-antigen complexes for which crystal structures are available. As reference, Lennard-Jones potentials, unspecific for residue type and biasing toward varying degrees of residue pair separation are used as controls. For interface design, the knowledge-based potentials give the best combination of consistently designable poses, low RMSD to the known structure, and more tightly bound interfaces with no added computational cost. 77% of the poses could be designed to give complexes with negative free energies of binding. Generally, larger interface separation promotes designability, but weakens the binding of the resulting designs. A localized docking test shows that the knowledge-based nature of the potentials improves performance and compares respectably with more sophisticated all-atoms potentials.
引用
收藏
页码:1540 / 1550
页数:11
相关论文
共 44 条
[11]   Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations [J].
Gray, JJ ;
Moughon, S ;
Wang, C ;
Schueler-Furman, O ;
Kuhlman, B ;
Rohl, CA ;
Baker, D .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 331 (01) :281-299
[12]   Adaptation of a fast Fourier transform-based docking algorithm for protein design [J].
Huang, PS ;
Love, JJ ;
Mayo, SL .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2005, 26 (12) :1222-1232
[13]  
HUBBARD SJ, 1993, NACCESS PROGRAM
[14]   Potential of mean force for protein-protein interaction studies [J].
Jiang, L ;
Gao, Y ;
Mao, FL ;
Liu, ZJ ;
Lai, LH .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2002, 46 (02) :190-196
[15]   Structure of CD40 ligand in complex with the Fab fragment of a neutralizing humanized antibody [J].
Karpusas, M ;
Lucci, J ;
Ferrant, J ;
Benjamin, C ;
Taylor, FR ;
Strauch, K ;
Garber, E ;
Hsu, YM .
STRUCTURE, 2001, 9 (04) :321-329
[16]   A new, structurally nonredundant, diverse data set of protein-protein interfaces and its implications [J].
Keskin, O ;
Tsai, CJ ;
Wolfson, H ;
Nussinov, R .
PROTEIN SCIENCE, 2004, 13 (04) :1043-1055
[17]   Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models [J].
Kollman, PA ;
Massova, I ;
Reyes, C ;
Kuhn, B ;
Huo, SH ;
Chong, L ;
Lee, M ;
Lee, T ;
Duan, Y ;
Wang, W ;
Donini, O ;
Cieplak, P ;
Srinivasan, J ;
Case, DA ;
Cheatham, TE .
ACCOUNTS OF CHEMICAL RESEARCH, 2000, 33 (12) :889-897
[18]   An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein-protein complexes [J].
Kortemme, T ;
Morozov, AV ;
Baker, D .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 326 (04) :1239-1259
[19]   Native protein sequences are close to optimal for their structures [J].
Kuhlman, B ;
Baker, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (19) :10383-10388
[20]   INTERPRETATION OF PROTEIN STRUCTURES - ESTIMATION OF STATIC ACCESSIBILITY [J].
LEE, B ;
RICHARDS, FM .
JOURNAL OF MOLECULAR BIOLOGY, 1971, 55 (03) :379-&