Quantum corrections to the ground-state energy of a trapped Bose-Einstein condensate: A diffusion Monte Carlo calculation

被引:58
作者
Blume, D [1 ]
Greene, CH
机构
[1] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[2] Univ Colorado, JILA, Boulder, CO 80309 USA
来源
PHYSICAL REVIEW A | 2001年 / 63卷 / 06期
关键词
D O I
10.1103/PhysRevA.63.063601
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The diffusion Monte Carlo method is applied to describe a trapped atomic Bose-Einstein condensate at zero temperature, fully quantum mechanically and nonperturbatively. For low densities, n(0)a(3)less than or equal to 2x10(-3) [n(0) peak density; a, s-wave scattering length], our calculations confirm that the exact ground-state energy for a sum of two-body interactions depends to a good approximation on only the atomic-physics parameter a, and no other details of the two-body model potential. Corrections to the mean-field Gross-Pitaevskii energy range from being essentially negligible to about 20% for N=2-50 particles in the trap with positive s-wave scattering length a = 100-10 000 a.u. Our numerical calculations confirm that inclusion of an additional effective potential term in the mean-field equation, which accounts for quantum fluctuations [see, e.g., E. Braaten and A. Nieto. Phys. Rev. B 56, 14 745 (1997)], leads to a greatly improved description of trapped Bose gases.
引用
收藏
页数:6
相关论文
共 33 条
[11]   Beyond the Gross-Pitaevskii approximation: Local density versus correlated basis approach for trapped bosons [J].
Fabrocini, A ;
Polls, A .
PHYSICAL REVIEW A, 1999, 60 (03) :2319-2323
[12]  
Fermi E., 1934, NUOVO CIMENTO, V11, P157, DOI [10.1007/BF02959829, DOI 10.1007/BF02959829]
[13]  
Fetter A. L., 1971, QUANTUM THEORY MANY
[14]   Ground state of a homogeneous Bose gas: A diffusion Monte Carlo calculation [J].
Giorgini, S ;
Boronat, J ;
Casulleras, J .
PHYSICAL REVIEW A, 1999, 60 (06) :5129-5132
[15]   STRUCTURE OF A QUANTIZED VORTEX IN BOSON SYSTEMS [J].
GROSS, EP .
NUOVO CIMENTO, 1961, 20 (03) :454-+
[16]   HYDRODYNAMICS OF A SUPERFLUID CONDENSATE [J].
GROSS, EP .
JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (02) :195-+
[17]   Critical temperature of Bose-Einstein condensation of hard-sphere gases [J].
Gruter, P ;
Ceperley, D ;
Laloe, F .
PHYSICAL REVIEW LETTERS, 1997, 79 (19) :3549-3552
[18]  
Hammond B. L., 1994, MONTE CARLO METHODS, DOI DOI 10.1142/1170
[19]   Precision Monte Carlo test of the Hartree-Fock approximation for a trapped Bose gas [J].
Holzmann, M ;
Krauth, W ;
Naraschewski, M .
PHYSICAL REVIEW A, 1999, 59 (04) :2956-2961
[20]   Pair correlation function of an inhomogeneous interacting Bose-Einstein condensate [J].
Holzmann, M ;
Castin, Y .
EUROPEAN PHYSICAL JOURNAL D, 1999, 7 (03) :425-432