Design and self-assembly of siRNA-functionalized RNA nanoparticles for use in automated nanomedicine

被引:126
作者
Afonin, Kirill A. [1 ,2 ]
Grabow, Wade W. [2 ]
Walker, Faye M. [2 ]
Bindewald, Eckart [3 ]
Dobrovolskaia, Marina A. [4 ]
Shapiro, Bruce A. [1 ]
Jaeger, Luc [2 ]
机构
[1] NCI, Ctr Canc Res Nanobiol Program, Frederick, MD 21701 USA
[2] Univ Calif Santa Barbara, Dept Chem & Biochem, Biomol Sci & Engn Program, Santa Barbara, CA 93106 USA
[3] NCI, Basic Sci Program, SAIC, Frederick Inc, Frederick, MD 21701 USA
[4] NCI, Nanotechnol Characterizat Lab, Adv Technol Program, SAIC Frederick Inc, Frederick, MD 21701 USA
基金
美国国家卫生研究院;
关键词
EMERGING FIELD; DELIVERY; INTERFERENCE; THERAPEUTICS; STRATEGIES; TOXICITY; HUMANS;
D O I
10.1038/nprot.2011.418
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Individual genes can be targeted with siRNAs. The use of nucleic acid nanoparticles (NPs) is a convenient method for delivering combinations of specific siRNAs in an organized and programmable manner. We present three assembly protocols to produce two different types of RNA self-assembling functional NPs using processes that are fully automatable. These NPs are engineered based on two complementary nanoscaffold designs (nanoring and nanocube), which serve as carriers of multiple siRNAs. The NPs are functionalized by the extension of up to six scaffold strands with siRNA duplexes. The assembly protocols yield functionalized RNA NPs, and we show that they interact in vitro with human recombinant Dicer to produce siRNAs. Our design strategies allow for fast, economical and easily controlled production of endotoxin-free therapeutic RNA NPs that are suitable for preclinical development.
引用
收藏
页码:2022 / 2034
页数:13
相关论文
共 64 条
[31]   The systemic toxicity of positively charged lipid nanoparticles and the role of Toll-like receptor 4 in immune activation [J].
Kedmi, Ranit ;
Ben-Arie, Noa ;
Peer, Dan .
BIOMATERIALS, 2010, 31 (26) :6867-6875
[32]   Controllable self-assembly of nanoparticles for specific delivery of multiple therapeutic molecules to cancer cells using RNA nanotechnology [J].
Khaled, A ;
Guo, SC ;
Li, F ;
Guo, PX .
NANO LETTERS, 2005, 5 (09) :1797-1808
[33]   Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy [J].
Kim, DH ;
Behlke, MA ;
Rose, SD ;
Chang, MS ;
Choi, S ;
Rossi, JJ .
NATURE BIOTECHNOLOGY, 2005, 23 (02) :222-226
[34]   Studies on aminoisonucleoside modified siRNAs: Stability and silencing activity [J].
Li, Zong-Sheng ;
Qiao, Ren-Ping ;
Du, Quan ;
Yang, Zhen-Jun ;
Zhang, Liang-Ren ;
Zhang, Pei-Zhuo ;
Liang, Zi-Cai ;
Zhang, Li-He .
BIOCONJUGATE CHEMISTRY, 2007, 18 (04) :1017-1024
[35]   Combinatorial RNAi Against HIV-1 Using Extended Short Hairpin RNAs [J].
Liu, Ying Poi ;
von Eije, Karin Jasmijn ;
Schopman, Nick C. T. ;
Westerink, Jan-Tinus ;
ter Brake, Olivier ;
Haasnoot, Joost ;
Berkhout, Ben .
MOLECULAR THERAPY, 2009, 17 (10) :1712-1723
[36]   RNA2D3D: A program for generating, viewing, and comparing 3-dimensional models of RNA [J].
Martinez, Hugo M. ;
Maizel, Jacob V., Jr. ;
Shapiro, Bruce A. .
JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2008, 25 (06) :669-683
[37]   Single-stranded antisense siRNAs guide target RNA cleavage in RNAi [J].
Martinez, J ;
Patkaniowska, A ;
Urlaub, H ;
Lührmann, R ;
Tuschl, T .
CELL, 2002, 110 (05) :563-574
[38]   Recombinant Dicer efficiently converts large dsRNAs into siRNAs suitable for gene silencing [J].
Myers, JW ;
Jones, JT ;
Meyer, T ;
Ferrell, JE .
NATURE BIOTECHNOLOGY, 2003, 21 (03) :324-328
[39]   Branched RNA nanostructures for RNA interference [J].
Nakashima, Yuko ;
Abe, Hiroshi ;
Abe, Naoko ;
Aikawa, Kyoko ;
Ito, Yoshihiro .
CHEMICAL COMMUNICATIONS, 2011, 47 (29) :8367-8369
[40]   Controlling RNA self-assembly to form filaments [J].
Nasalean, L ;
Baudrey, S ;
Leontis, NB ;
Jaeger, L .
NUCLEIC ACIDS RESEARCH, 2006, 34 (05) :1381-1392