Machine learning for neuroirnaging with scikit-learn

被引:1241
作者
Abraham, Alexandre [1 ,2 ]
Pedregosa, Fabian [1 ,2 ]
Eickenberg, Michael [1 ,2 ]
Gervais, Philippe [1 ,2 ]
Mueller, Andreas [3 ]
Kossaifi, Jean [4 ]
Gramfort, Alexandre [1 ,2 ,5 ]
Thirion, Bertrand [1 ,2 ]
Varoquaux, Gael [1 ,2 ]
机构
[1] INRIA Saclay Ile de France, Parietal Team, Saclay, France
[2] CEA, DSV, I2BM, Neurospin, F-91191 Gif Sur Yvette, France
[3] Univ Bonn, Inst Comp Sci 6, Bonn, Germany
[4] Univ London Imperial Coll Sci Technol & Med, Dept Comp, London, England
[5] CNRS LTCI, Telecom ParisTech, Inst Mines Telecom, Paris, France
关键词
machine learning; statistical learning; neuroimaging; scikit-learn; !text type='Python']Python[!/text; INDEPENDENT COMPONENT ANALYSIS; RECOGNITION;
D O I
10.3389/fninf.2014.00014
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g., multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g., resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.
引用
收藏
页数:10
相关论文
共 37 条
[1]   Probabilistic independent component analysis for functional magnetic resonance imaging [J].
Beckmann, CF ;
Smith, SA .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2004, 23 (02) :137-152
[2]   FUNCTIONAL CONNECTIVITY IN THE MOTOR CORTEX OF RESTING HUMAN BRAIN USING ECHO-PLANAR MRI [J].
BISWAL, B ;
YETKIN, FZ ;
HAUGHTON, VM ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) :537-541
[3]   A method for making group inferences from functional MRI data using independent component analysis [J].
Calhoun, VD ;
Adali, T ;
Pearlson, GD ;
Pekar, JJ .
HUMAN BRAIN MAPPING, 2001, 14 (03) :140-151
[4]   A whole brain fMRI atlas generated via spatially constrained spectral clustering [J].
Craddock, R. Cameron ;
James, G. Andrew ;
Holtzheimer, Paul E., III ;
Hu, Xiaoping P. ;
Mayberg, Helen S. .
HUMAN BRAIN MAPPING, 2012, 33 (08) :1914-1928
[5]  
Detre G., 2006, ANN M ORG HUM BRAIN
[6]   Least angle regression - Rejoinder [J].
Efron, B ;
Hastie, T ;
Johnstone, I ;
Tibshirani, R .
ANNALS OF STATISTICS, 2004, 32 (02) :494-499
[7]  
Friston K, 2007, STATISTICAL PARAMETRIC MAPPING: THE ANALYSIS OF FUNCTIONAL BRAIN IMAGES, P10, DOI 10.1016/B978-012372560-8/50002-4
[8]  
Gorgolewski Krzysztof, 2011, Front Neuroinform, V5, P13, DOI 10.3389/fninf.2011.00013
[9]  
Hall M., 2009, SIGKDD Explorations, V11, P10, DOI DOI 10.1145/1656274.1656278
[10]   PyMVPA: a Python']Python Toolbox for Multivariate Pattern Analysis of fMRI Data [J].
Hanke, Michael ;
Halchenko, Yaroslav O. ;
Sederberg, Per B. ;
Hanson, Stephen Jose ;
Haxby, James V. ;
Pollmann, Stefan .
NEUROINFORMATICS, 2009, 7 (01) :37-53