Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease

被引:510
作者
Haas, D [1 ]
Keel, C [1 ]
机构
[1] Univ Lausanne, Inst Microbiol Fondamentale, CH-1015 Lausanne, Switzerland
关键词
rhizosphere; soilborne pathogens; secondary metabolism; transcriptional regulation; posttranscriptional regulation;
D O I
10.1146/annurev.phyto.41.052002.095656
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Certain strains of fluorescent pseudomonads are important biological components of agricultural soils that are suppressive to diseases caused by pathogenic fungi on crop plants. The biocontrol abilities of such strains depend essentially on aggressive root colonization, induction of systemic resistance in the plant, and the production of diffusible or volatile antifungal antibiotics. Evidence that these compounds are produced in situ is based on their chemical extraction from the rhizosphere and on the expression of antibiotic biosynthetic genes in the producer strains colonizing plant roots. Well-characterized antibiotics with biocontrol properties include phenazines, 2,4-diacetylphloroglucinol, pyoluteorin, pyrrolnitrin, lipopeptides, and hydrogen cyanide. In vitro, optimal production of these compounds occurs at high cell densities and during conditions of restricted growth, involving (i) a number of transcriptional regulators, which are mostly pathway-specific, and (ii) the GacS/GacA two-component system, which globally exerts a positive effect on the production of extracellular metabolites at a posttranscriptional level. Small untranslated RNAs have important roles in the GacS/GacA signal transduction pathway. One challenge in future biocontrol research involves development of new strategies to overcome the broad toxicity and lack of antifungal specificity displayed by most biocontrol antibiotics studied so far.
引用
收藏
页码:117 / 153
页数:37
相关论文
共 271 条
[31]   HYDROGEN-CYANIDE PRODUCTION BY PSEUDOMONAS-AERUGINOSA AT REDUCED OXYGEN LEVELS [J].
CASTRIC, PA .
CANADIAN JOURNAL OF MICROBIOLOGY, 1983, 29 (10) :1344-1349
[32]  
CASTRIC PA, 1981, CYANIDE BIOL, P233
[33]   RNA interference: traveling in the cell and gaining functions? [J].
Cerutti, H .
TRENDS IN GENETICS, 2003, 19 (01) :39-46
[34]   Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria [J].
Cha, C ;
Gao, P ;
Chen, YC ;
Shaw, PD ;
Farrand, SK .
MOLECULAR PLANT-MICROBE INTERACTIONS, 1998, 11 (11) :1119-1129
[35]  
Chancey ST, 1999, APPL ENVIRON MICROB, V65, P2294
[36]   Revisiting the stringent response, ppGpp and starvation signaling [J].
Chatterji, D ;
Ojha, AK .
CURRENT OPINION IN MICROBIOLOGY, 2001, 4 (02) :160-165
[37]   Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot [J].
Chin-A-Woeng, TFC ;
Bloemberg, GV ;
Mulders, IHM ;
Dekkers, LC ;
Lugtenberg, BJJ .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2000, 13 (12) :1340-1345
[38]   Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici [J].
Chin-A-Woeng, TFC ;
Bloemberg, GV ;
van der Bij, AJ ;
van der Drift, KMGF ;
Schripsema, J ;
Kroon, B ;
Scheffer, RJ ;
Keel, C ;
Bakker, PAHM ;
Tichy, HV ;
de Bruijn, FJ ;
Thomas-Oates, JE ;
Lugtenberg, BJJ .
MOLECULAR PLANT-MICROBE INTERACTIONS, 1998, 11 (11) :1069-1077
[39]   Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into the growth medium [J].
Chin-A-Woeng, TFC ;
van den Broek, D ;
de Voer, G ;
van der Drift, KMGM ;
Tuinman, S ;
Thomas-Oates, JE ;
Lugtenberg, BJJ ;
Bloemberg, GV .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2001, 14 (08) :969-979
[40]   Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing Pseudomonas spp. strains [J].
Chin-A-Woeng, TFC ;
Thomas-Oates, JE ;
Lugtenberg, BJJ ;
Bloemberg, GV .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2001, 14 (08) :1006-1015