Signalling pathways for insulin-like growth factor type 1-mediated expression of uncoupling protein 3

被引:15
作者
Gustafsson, H [1 ]
Tamm, C [1 ]
Forsby, A [1 ]
机构
[1] Stockholm Univ, Dept Neurochem & Neurotoxicol, SE-10691 Stockholm, Sweden
关键词
IGF-1; MAP kinase; oxidative stress; PI3-kinase; SH-SY5Y; uncoupling protein;
D O I
10.1046/j.1471-4159.2003.02162.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Uncoupling protein 3 (UCP3) is a mitochondrial protein with antioxidant properties and its regulation by factors promoting cell-survival may be important for protection of, for instance, neurons in states of oxidative stress. In the present study, we investigated regulatory pathways for UCP3 expression mediated by the neuroprotective hormone insulin-like growth factor type 1 (IGF-1) in human neuroblastoma SH-SY5Y cells. Northern blot analysis and RT-PCR showed that treatment with 10 nm IGF-1 increased the UCP3 mRNA levels 2.5-fold after 5 h. Co-incubation with the phosphatidylinositol 3 (PI3)-kinase inhibitor LY294002 prohibited IGF-1-mediated induction of both UCP3 mRNA and protein in a concentration-dependent manner, with a complete blockage at 1 mum, as shown by RT-PCR and western blot analyses. The mitogen-activated protein (MAP) kinase kinase 1 (MKK1 or MEK) inhibitor PD98059 also decreased the UCP3 mRNA expression at 10 mum, however, this concentration only partly inhibited the protein expression. We conclude that IGF-1 enhanced UCP3 expression at transcriptional level, primarily through the PI3-kinase-dependent pathway and partly through the MAP kinase pathway.
引用
收藏
页码:462 / 468
页数:7
相关论文
共 44 条
[1]   PD-098059 IS A SPECIFIC INHIBITOR OF THE ACTIVATION OF MITOGEN-ACTIVATED PROTEIN-KINASE KINASE IN-VITRO AND IN-VIVO [J].
ALESSI, DR ;
CUENDA, A ;
COHEN, P ;
DUDLEY, DT ;
SALTIEL, AR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (46) :27489-27494
[2]   Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production [J].
Arsenijevic, D ;
Onuma, H ;
Pecqueur, C ;
Raimbault, S ;
Manning, BS ;
Miroux, B ;
Couplan, E ;
Alves-Guerra, MC ;
Goubern, M ;
Surwit, R ;
Bouillaud, F ;
Richard, D ;
Collins, S ;
Ricquier, D .
NATURE GENETICS, 2000, 26 (04) :435-439
[3]  
BIEDLER JL, 1973, CANCER RES, V33, P2643
[4]   Uncoupling proteins 2 and 3 - Potential regulators of mitochondrial energy metabolism [J].
Boss, O ;
Hagen, T ;
Lowell, BB .
DIABETES, 2000, 49 (02) :143-156
[5]   Uncoupling protein-3: A new member of the mitochondrial carrier family with tissue-specific expression [J].
Boss, O ;
Samec, S ;
PaoloniGiacobino, A ;
Rossier, C ;
Dulloo, A ;
Seydoux, J ;
Muzzin, P ;
Giacobino, JP .
FEBS LETTERS, 1997, 408 (01) :39-42
[6]   Uncoupling protein-3 expression in rodent skeletal muscle is modulated by food intake but not by changes in environmental temperature [J].
Boss, O ;
Samec, S ;
Kühne, F ;
Bijlenga, P ;
Assimacopoulos-Jeannet, F ;
Seydoux, J ;
Giacobino, JP ;
Muzzin, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (01) :5-8
[7]   Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway [J].
Brunet, A ;
Datta, SR ;
Greenberg, ME .
CURRENT OPINION IN NEUROBIOLOGY, 2001, 11 (03) :297-305
[8]   The basal proton conductance of skeletal muscle mitochondria from transgenic mice overexpressing or lacking uncoupling protein-3 [J].
Cadenas, S ;
Echtay, KS ;
Harper, JA ;
Jekabsons, MB ;
Buckingham, JA ;
Grau, E ;
Abuin, A ;
Chapman, H ;
Clapham, JC ;
Brand, MD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (04) :2773-2778
[9]   A critical analysis of the role of growth hormone and IGF-1 in aging and lifespan [J].
Carter, CS ;
Ramsey, MM ;
Sonntag, WE .
TRENDS IN GENETICS, 2002, 18 (06) :295-301
[10]   In vivo effects of uncoupling protein-3 gene disruption on mitochondrial energy metabolism [J].
Cline, GW ;
Vidal-Puig, AJ ;
Dufour, S ;
Cadman, KS ;
Lowell, BB ;
Shulman, GI .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (23) :20240-20244