The electrochemical performance of graphene modified electrodes: An analytical perspective

被引:75
作者
Brownson, Dale A. C. [1 ]
Foster, Christopher W. [1 ]
Banks, Craig E. [1 ]
机构
[1] Manchester Metropolitan Univ, Fac Sci & Engn, Sch Sci & Environm, Div Chem & Environm Sci, Manchester M1 5GD, Lancs, England
关键词
PLANE PYROLYTIC-GRAPHITE; CARBON-PASTE ELECTRODE; ASCORBIC-ACID; URIC-ACID; VOLTAMMETRIC DETERMINATION; DOPAMINE; BENZOQUINONE; PARACETAMOL; NANOTUBES; OXIDATION;
D O I
10.1039/c2an16279b
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We explore the use of graphene modified electrodes towards the electroanalytical sensing of various analytes, namely dopamine hydrochloride, uric acid, acetaminophen and p-benzoquinone via cyclic voltammetry. In line with literature methodologies and to investigate the full-implications of employing graphene in this electrochemical context, we modify electrode substrates that exhibit either fast or slow electron transfer kinetics (edge-or basal-plane pyrolytic graphite electrodes respectively) with well characterised commercially available graphene that has not been chemically treated, is free from surfactants and as a result of its fabrication has an extremely low oxygen content, allowing the true electroanalytical applicability of graphene to be properly de-convoluted and determined. In comparison to the unmodified underlying electrode substrates (constructed from graphite), we find that graphene exhibits a reduced analytical performance in terms of sensitivity, linearity and observed detection limits towards each of the various analytes studied within. Owing to graphene's structural composition, low proportion of edge plane sites and consequent slow heterogeneous electron transfer rates, there appears to be no advantages, for the analytes studied here, of employing graphene in this electroanalytical context.
引用
收藏
页码:1815 / 1823
页数:9
相关论文
共 60 条
[11]   Electrochemistry of graphene: not such a beneficial electrode material? [J].
Brownson, Dale A. C. ;
Munro, Lindsey J. ;
Kampouris, Dimitrios K. ;
Banks, Craig E. .
RSC ADVANCES, 2011, 1 (06) :978-988
[12]   Graphene Electrochemistry: Surfactants Inherent to Graphene Can Dramatically Effect Electrochemical Processes [J].
Brownson, Dale A. C. ;
Metters, Jonathan P. ;
Kampouris, Dimitrios K. ;
Banks, Craig E. .
ELECTROANALYSIS, 2011, 23 (04) :894-899
[13]   An overview of graphene in energy production and storage applications [J].
Brownson, Dale A. C. ;
Kampouris, Dimitrios K. ;
Banks, Craig E. .
JOURNAL OF POWER SOURCES, 2011, 196 (11) :4873-4885
[14]   Graphene electrochemistry: Surfactants inherent to graphene inhibit metal analysis [J].
Brownson, Dale A. C. ;
Banks, Craig E. .
ELECTROCHEMISTRY COMMUNICATIONS, 2011, 13 (02) :111-113
[15]   Graphene electrochemistry: an overview of potential applications [J].
Brownson, Dale A. C. ;
Banks, Craig E. .
ANALYST, 2010, 135 (11) :2768-2778
[16]   Improved voltammetric peak separation and sensitivity of uric acid and ascorbic acid at nanoplatelets of graphitic oxide [J].
Chang, Jen-Lin ;
Chang, Kuo-Hsin ;
Hu, Chi-Chang ;
Cheng, Wan-Ling ;
Zen, Jyh-Myng .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (04) :596-599
[17]   Substrate-free gas-phase synthesis of graphene sheets [J].
Dato, Albert ;
Radmilovic, Velimir ;
Lee, Zonghoon ;
Phillips, Jonathan ;
Frenklach, Michael .
NANO LETTERS, 2008, 8 (07) :2012-2016
[18]   Voltammetry at spatially heterogeneous electrodes [J].
Davies, TJ ;
Banks, CE ;
Compton, RG .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2005, 9 (12) :797-808
[19]   The cyclic voltammetric response of electrochemically heterogeneous surfaces [J].
Davies, TJ ;
Moore, RR ;
Banks, CE ;
Compton, RG .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2004, 574 (01) :123-152
[20]  
ESWARADU.VV, 1974, ANAL CHEM, V46, P1777