AFM and SNOM characterization of carboxylic acid terminated silicon and silicon nitride surfaces

被引:14
作者
Cricenti, A
Longo, G
Luce, M
Generosi, R
Perfetti, P
Vobornik, D
Margaritondo, G
Thielen, P
Sanghera, JS
Aggarwal, ID
Miller, JK
Tolk, NH
Piston, DW
Cattaruzza, F
Flamini, A
Prosperi, T
Mezzi, A
机构
[1] CNR, Ist Struttura Mat, I-00133 Rome, Italy
[2] Ecole Polytech Fed Lausanne, Inst Phys Appl, CH-1015 Lausanne, Switzerland
[3] USN, Res Lab, Div Opt Sci, Washington, DC 20375 USA
[4] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA
[5] Vanderbilt Univ, Dept Mol Physiol & Biophys, Nashville, TN 37232 USA
[6] CNR, Ist Struttura Mat, Area Ric Roma, Monterotondo Stn, I-00016 Monterotondo, Italy
[7] CNR, Ist Studio Mat Nanostrutturati, Area Ric Roma, Monterotondo Stn, I-00016 Monterotondo, Italy
基金
美国国家卫生研究院;
关键词
carboxylic acid; atomic force microscopy; silicon; silicon nitride;
D O I
10.1016/S0039-6028(03)00999-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silicon and silicon nitride surfaces have been successfully terminated with carboxylic acid monolayers and investigated by atomic force microscopy (AFM) and scanning near-field optical microscopy (SNOM). On clean Si surface, AFM showed topographical variations of 0.3-0.4 nm while for the clean Si3N4 surface the corrugation was around 3-4 nm. After material deposition, the corrugation increased in both samples with a value in topography of 1-2 nm for Si and 5-6 nm for Si3N4. The space distribution of specific chemical species was obtained by taking SNOM reflectivity at several infrared wavelengths corresponding to stretch absorption bands of the material. The SNOM images showed a constant contribution in the local reflectance, suggesting that the two surfaces were uniformly covered. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:51 / 57
页数:7
相关论文
共 19 条
[1]   COMBINED SHEAR FORCE AND NEAR-FIELD SCANNING OPTICAL MICROSCOPY [J].
BETZIG, E ;
FINN, PL ;
WEINER, JS .
APPLIED PHYSICS LETTERS, 1992, 60 (20) :2484-2486
[2]   ATOMIC FORCE MICROSCOPE [J].
BINNIG, G ;
QUATE, CF ;
GERBER, C .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :930-933
[3]   AIR OPERATING ATOMIC FORCE-SCANNING TUNNELING MICROSCOPE SUITABLE TO STUDY SEMICONDUCTORS, METALS, AND BIOLOGICAL SAMPLES [J].
CRICENTI, A ;
GENEROSI, R .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1995, 66 (04) :2843-2847
[4]   A multipurpose scanning near-field optical microscope: Reflectivity and photocurrent on semiconductor and biological samples [J].
Cricenti, A ;
Generosi, R ;
Barchesi, C ;
Luce, M ;
Rinaldi, M .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1998, 69 (09) :3240-3244
[5]  
FIESER LF, 1967, REAGENTS ORGANIC SYN, V1, P364
[6]  
FLAMINI A, IN PRESS
[7]   Bioengineering of silicon nitride [J].
Gao, H ;
Luginbuhl, R ;
Sigrist, H .
SENSORS AND ACTUATORS B-CHEMICAL, 1997, 38 (1-3) :38-41
[8]  
HERZBERG G, 1991, INGRARED RAMAN SPECT
[9]   MEASUREMENT OF NANOMECHANICAL PROPERTIES OF METALS USING THE ATOMIC-FORCE MICROSCOPE [J].
HUES, SM ;
DRAPER, CF ;
COLTON, RJ .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1994, 12 (03) :2211-2214
[10]   FIXATION OF DNA DIRECTLY ON OPTICAL WAVE-GUIDE SURFACES FOR MOLECULAR PROBE BIOSENSOR DEVELOPMENT [J].
KARYMOV, MA ;
KRUCHININ, AA ;
TARANTOV, YA ;
BALOVA, IA ;
REMISOVA, LA ;
VLASOV, YG .
SENSORS AND ACTUATORS B-CHEMICAL, 1995, 29 (1-3) :324-327