Remarks on entanglement measures and non-local state distinguishability

被引:36
作者
Eisert, J
Audenaert, K
Plenio, MB
机构
[1] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, QOLS, London SW7 2BW, England
[2] Univ Potsdam, Inst Phys, D-14469 Potsdam, Germany
[3] Univ Coll N Wales, Sch Informat, Bangor LL57 1UT, Gwynedd, Wales
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2003年 / 36卷 / 20期
关键词
D O I
10.1088/0305-4470/36/20/316
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the properties of three entanglement measures that quantify the statistical distinguishability of a given state with the closest disentangled state that has the same reductions as the primary state. In particular, we concentrate on the relative entropy of entanglement with reversed entries. We show that this quantity is an entanglement monotone which is strongly additive, thereby demonstrating that monotonicity under local quantum operations and strong additivity are compatible in principle. In accordance with the presented statistical interpretation which is provided, this entanglement monotone, however, has the property that it diverges on pure states, with the consequence that it cannot distinguish the degree of entanglement of different pure states. We also prove that the relative entropy of entanglement with respect to the set of disentangled states that have identical reductions to the primary state is an entanglement monotone. We finally investigate the trace-norm measure and demonstrate that it is also a proper entanglement monotone.
引用
收藏
页码:5605 / 5615
页数:11
相关论文
共 38 条
[1]   Entanglement cost under positive-partial-transpose-preserving operations - art. no. 0279015 [J].
Audenaert, K ;
Plenio, MB ;
Eisert, J .
PHYSICAL REVIEW LETTERS, 2003, 90 (02) :4
[2]   Asymptotic relative entropy of entanglement for orthogonally invariant states [J].
Audenaert, K ;
De Moor, B ;
Vollbrecht, KGH ;
Werner, RF .
PHYSICAL REVIEW A, 2002, 66 (03) :323101-323111
[3]   Asymptotic relative entropy of entanglement -: art. no. 217902 [J].
Audenaert, K ;
Eisert, J ;
Jané, E ;
Plenio, MB ;
Virmani, S ;
De Moor, B .
PHYSICAL REVIEW LETTERS, 2001, 87 (21) :217902-1
[4]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[5]   Geometric picture of entanglement and Bell inequalities [J].
Bertlmann, RA ;
Narnhofer, H ;
Thirring, W .
PHYSICAL REVIEW A, 2002, 66 (03) :9
[6]  
BHATIA R, 1997, MATRIX THEORY
[7]   The uniqueness theorem for entanglement measures [J].
Donald, MJ ;
Horodecki, M ;
Rudolph, O .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (09) :4252-4272
[8]   Continuity of relative entropy of entanglement [J].
Donald, MJ ;
Horodecki, M .
PHYSICS LETTERS A, 1999, 264 (04) :257-260
[9]   Classical information and distillable entanglement [J].
Eisert, J ;
Felbinger, T ;
Papadopoulos, P ;
Plenio, MB ;
Wilkens, M .
PHYSICAL REVIEW LETTERS, 2000, 84 (07) :1611-1614
[10]   On the quantification of entanglement in infinite-dimensional quantum systems [J].
Eisert, J ;
Simon, C ;
Plenio, MB .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (17) :3911-3923